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Abstract

Consider a panel data setting where repeated observations on individuals are avail-

able. Often it is reasonable to assume that there exist groups of individuals that share

similar effects of observed characteristics, but the grouping is typically unknown in

advance. We first conduct a local analysis which reveals that the variances of the in-

dividual coefficient estimates contain useful information for the estimation of group

structure. We then propose a method to estimate unobserved groupings for general

panal data models that explicitly accounts for the variance information. Our proposed

method remains computationally feasible with a large number of individuals and/or

repeated measurements on each individual. The developed ideas can also be applied

even when individual-level data are not available and only parameter estimates together

with some quantification of estimation uncertainty are given to the researcher. A thor-

ough simulation study demonstrates superior performance of our method than existing

methods and we apply the method to two empirical applications.
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1 Introduction

Panel data models are a standard empirical tool in statistics, economics, marketing, and

financial research. The conventional modeling approach is to assume that all individual

heterogeneity can be summarized by an individual specific intercept, often known as the

fixed effects, while assuming all covariates have a common effect among all the individuals,

such that information can be pooled across individuals to gain efficiency for estimating

these common parameters. However, heterogeneous responses towards observed control

variables are often better supported by empirical evidence, especially as detailed individual

level data becomes more available.

An increasingly popular approach to model unobserved heterogeneity in the effects of

covariates on individual responses is to assume the existence of a finite number of homo-

geneous groups. Here, parameters in a potentially non-linear model1 are assumed to take

common values within groups but differ across groups. The main challenge is to learn

the unobserved group structure from observed data. An alternative way to model unob-

served heterogeneity is through latent factors (e.g., Bai (2009)). This approach also has

discrete heterogeneity in the sense that a small number of unobserved factors drive the

co-movement of a large number of time series. Both group pattern and factor structure are

useful empirical tools, but they have different interpretations. In this paper, we focus on

group patterns.

The existing literature can be roughly categorized into three categories. Methods from

the first category rely on minimizing a loss function that incorporates different coefficients

for all individuals combined with a penalty which encourages the coefficient estimates to

be similar. Su et al. (2016) propose the classifier-LASSO (C-LASSO) approach, which is

applicable to both linear and nonlinear models. Differences among individual parameters

are penalized through a LASSO type penalty, and consistent grouping can be achieved if

the penalty parameter is chosen properly. Wang et al. (2018) propose a Panel-CARDS

penalty which extends the idea of homogeneity pursuit in Ke et al. (2015) from cross-

sectional models to panel data models. Gu and Volgushev (2019) propose to use the convex

clustering penalty of Hocking et al. (2011) in panel data quantile regression models with

grouped individual intercepts and common slope parameters.

An alternative approach is to relate the group structure estimation problem to clus-

tering; here clusters in the coefficient vectors correspond to latent groups of individuals.

Estimating clusters has a long history in statistics and economics. Among the many cluster-

ing algorithms, the k-mean algorithm by MacQueen et al. (1967) is one of the most popular

and commonly used methods. However, instead of directly applying k-mean methods on the

estimated individual parameters, Lin and Ng (2012) and Bonhomme and Manresa (2015)

propose to incorporate the regression loss function and re-estimate the group-specific co-

1Examples include quantile regression and discrete outcome models.
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efficients in an iterative fashion. Originally proposed for linear regression models, this

approach has also been extended to quantile regression models by Zhang et al. (2019a)

and Leng et al. (2023). Further advancement of this literature has considered time varying

group membership, for example Miao et al. (2020), Okui and Wang (2021) and Lumsdaine

et al. (2023).

Both the penalization-based and clustering-based approaches described above require

the repeated fitting of large regression models which involve all individuals and all individual-

specific parameters in a large-scale minimization problem. This can be computationally

costly especially for large scale datasets, which become more and more common in prac-

tice. In addition, the extensions of the k-means approach discussed above rely on iterative

algorithms with random initialization which require repeated application with many differ-

ent starting points. Motivated by those computational challenges, Chetverikov and Man-

resa (2022) propose an estimator for linear panel data models with grouped intercepts and

common slope. Their approach is shown to guarantee the same theoretical properties as

Bonhomme and Manresa (2015) but is computationally much faster. It should be pointed

out however that their approach seems to be difficult to extend to non-linear panels. Wang

and Su (2021) propose to use ordered individual-specific regression estimators to convert

the grouping problem into a change-point detection setting and apply binary segmentation

to learn the underlying group structure. This approach can be applied to both linear and

nonlinear panel data models. It is computationally efficient because the individual-specific

regressions only need to be estimated once rather than in an iterative fashion. They further

show that by considering the spectral decomposition of an outer product of the individual

parameter estimates and then applying binary segmentation on the leading eigenvectors

can lead to improved group estimation.

In the present paper, we propose a novel approach that retains the computational ad-

vantages of working with individual-specific regressions but explicitly takes into account

the uncertainty in the corresponding estimates. This information is particularly important

in settings where different entries of a coefficient vector are estimated with different degrees

of precision and hence carry varying amounts of information about the underlying popu-

lation coefficients. To motivate the specific form of reweighting we use, we first conduct a

simplified analysis in a local alternative framework. In the simplest case where there are

only two groups in the population, we study the probability of classifying an individual to

one of two groups when the separation between group centers tends to zero at a certain

rate. This analysis targets a simplified iteration step which is the key ingredient of most

existing iterative procedures for estimating group membership.

This local analysis motivates us to weigh the differences between coefficient estimates

of different individuals by an estimated variance-covariance matrix. The resulting weighted

differences can not be interpreted as a Euclidean distance. This renders many classical

clustering approaches such as the vanilla k-means algorithm or extensions of homogeneity
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pursuit and binary segmentation inapplicable. We handle this challenge by interpreting

the weighted distances as a quantification of dissimilarity between individuals. With this

interpretation, we can apply any clustering approach that works with general measures of

dissimilarity. We consider two popular approaches: k-medoids Schubert and Rousseeuw

(2019) and spectral clustering Ng et al. (2002). In simulation studies, we find that both ap-

proaches outperform existing proposals. In finite samples, the spectral clustering approach

works better than the k-medoids approach and we provide high level assumptions which

guarantee consistent group structure recovery asymptotically.

The remaining paper is organized as follows. In Section 2.2 we present the simple local

analysis motivates our approach. Section 2.3 contains a detailed description of the pro-

posed estimation procedure and illustrates it on several specific models that were previously

considered in the literature. Section 3.1 contains theoretical guarantees on correct group

estimation under high-level conditions. Those conditions are verified for several examples

in Section 3.2. A simulation study is presented in Section 4. An empirical illustration an-

alyzing the heterogeneous relationship between income and pollution level among different

states using data from the United States is given in Section 5. We also apply our approach

to the commuting zone summary statistics provided by Chetty and Hendren (2018) to an-

alyze group patterns of intergenerational income mobility. Section 6 concludes. All proofs

and some additional plots are deferred to the supplementary material.

2 Setting and proposed methodology

2.1 General setting

Assume that we have repeated observations (xit, Yit)t=1,...,T from individuals i = 1, ..., n.

Our goal is to assign the individuals into G∗ groups such that individuals in the same group

share a set of characteristics. For now, let G∗ be given, a data-driven choice of G∗ will be

discussed at a later point.

Specifically, assume that the characteristics of individual i are described by a vector of

parameters γi and that we are interested in grouping individuals according to sub-vectors

βi ∈ Rp of γi. For instance, γi can be coefficients in a non-linear model linking the response

Yit to the covariates xit and βi can be the full vector γi, a sub-vector thereof, or simply the

intercept term in a regression model. Specific examples are provided in Section 2.4.

A popular approach to such problems, pioneered by Lin and Ng (2012) and Bonhomme

and Manresa (2015), is to interpret this as a clustering problem and apply an iterative

approach in the spirit of Lloyd’s k-means clustering algorithm. For concreteness, assume

that we only have two groups and that the coefficient vectors γi = (αi,βi)
2 can be estimated

2since the αi will be left unrestricted, they correspond to the individual specific effects
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by minimizing a loss function L via

(α̂i, β̂i) = argmin
α,β

T∑
t=1

L(xit, Yit;α,β).

Roughly speaking, procedures in the spirit of Lin and Ng (2012); Bonhomme and Man-

resa (2015) consist of an initialization step where individuals are assigned to groups in a

randomized fashion, followed by iterative re-assignments until convergence. In the k’th

iteration step, denote the group centers from step k − 1 by β̂
(k−1)
1 , β̂

(k−1)
2 . Now individual

i is assigned to group 1 iff3

inf
α

T∑
t=1

L(xit, Yit;α, β̂
(k−1)
1 ) < inf

α

T∑
t=1

L(xit, Yit;α, β̂
(k−1)
2 ). (1)

This approach has been adopted to quantile regression by Zhang et al. (2019a). In practice,

it has two potential drawbacks. First, for large n, T the cost of each iteration step can be

expensive. Second and more importantly, if only initial estimators α̂i, β̂i but not individual

level data are available, this approach is infeasible to implement.

Assuming that we only have access to estimators α̂i, β̂i and covariance estimates Σ̂i for

β̂i, a natural alternative to the iteration step is to assign individual i to group 1 iff

∥Σ̂−1/2
i (β̂i − β̂

(k−1)
1 )∥2 < ∥Σ̂−1/2

i (β̂i − β̂
(k−1)
2 )∥2. (2)

For a motivation, note that the problem of assigning individual i to group 1 or 2 reduces

to classifying an individual into one of two classes. The rule in (2) can now be viewed as

an approximate Bayes rule in classification: if Σ̂i are fixed and β̂i − β∗
i ∼ N(0, Σ̂i) and

the population parameters β∗
i satisfy β∗

i ∈ {β̂(k−1)
1 , β̂

(k−1)
2 }, (2) reduces to the Bayes rule

which is known to be optimal for minimizing classification error.

At this point, it is natural to wonder whether the rule in (1) or in (2) should be used.

We next argue that, in a simplified but general setting, the classification error of rule (2)

is (asymptotically) always at least as good as that of (1).

2.2 Loss functions versus weighted distances of estimators: a local anal-

ysis

To keep the presentation focused and notation simple, consider a single individual and drop

the index i throughout this section. Assume that the true parameter that generated the

data is γ∗ = (α∗,β∗) and that we want to decide based on observations (xt, Yt)t=1,...,T

whether the data are generated from parameter (α1,β1) or (α2,β2) where β1,β2 are given

3Bonhomme and Manresa (2015) consider linear least squares models where the individual-specific inter-
cepts αi can be differenced out. The method presented here is a canonical generalization of their approach
to non-linear models where differencing out individual effects may not be possible.
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and α1, α2 ∈ R are unspecified. Let Γ denote the parameter space and define

(α̂, β̂) := argmin
(α,β)∈Γ

T∑
t=1

L(xt, Yt;α,β).

Denote by Σ̂ a consistent estimator of the asymptotic variance of β̂. Define

k̂BM = 1 ⇐⇒ inf
α

T∑
t=1

L(Yt − α− x⊤
t β1) < inf

α

T∑
t=1

L(Yt − α− x⊤
t β2)

and

k̂PAM = 1 ⇐⇒ ∥Σ̂−1/2(β̂ − β1)∥2 < ∥Σ̂−1/2(β̂ − β2)∥2.

We also consider a more general approach for a general weight matrix KT that can depend

on the sample size and on the available data

k̂PAM,KT = 1 ⇐⇒ ∥KT (β̂ − β1)∥2 < ∥KT (β̂ − β2)∥2.

This includes the case of no weighting by setting KT to be the identity matrix. We will

now compare those rules in a local alternative regime where β1 = β∗,β2 = β∗ + T−1/2∆.

Assume that the loss function L has the following properties.

Assumption 2.1. Assume that (x1, Y1), . . . , (xT , YT ) are i.i.d. and that further

(i) The map m : γ 7→ E[L(xt, Yt;γ)] is twice continuously differentiable in a neighbour-

hood of γ∗ with symmetric Hessian matrix Aγ of full rank.

(ii) The map g : γ 7→ L(xt, Yt;γ) is differentiable at γ∗ on a set Z such that P((xt, Yt) ∈
Z) = 1 and there exists a measurable function ġ such that almost surely |L(xt, Yt;γ1)−
L(xt, Yt;γ2)| ≤ ġ(xt, Yt)∥γ1−γ2∥ for all γ1,γ2 in a neighborhood of γ∗ and E[ġ(xt, Yt)

2] <

∞.

(iii) For any β in a neighbourhood B of β∗ the function α 7→ m(α,β) has a well separated

(uniformly in β) global minimizer α∗
β, i.e. for every ε > 0 we have

inf
β∈B

inf
|α−α∗

β|>ε

(
m(α,β)−m(α∗

β,β)
)
> 0.

(iv) The value γ∗ is in the interior of the parameter space Γ. Either the parameter space

Γ is compact or the parameter space is convex and the function γ 7→ L(xt, Yt;γ) is

convex almost surely.

It is routine to verify that all of the above conditions hold for two important examples

that we will discuss throughout this paper: quantile regression and logistic regression. More
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generally, parts (i) and (ii) of the assumptions are fairly mild and standard conditions

for establishing asymptotic normality and expansions for m-estimators, see for instance

Theorem 5.23 and the discussion around it in van der Vaart (2000). Conditions (iii) and

(iv) are added because the proof relies not only on expansions for the original estimator but

also for the minimizer of the perturbed objective
∑T

t=1 L(Yt−α−x⊤
t β) where β ̸= β∗. We

have opted for simple to state and verify conditions rather than the most general possible

ones. The proof of Theorem 2.1 reveals that it is the expansions (25)–(28) in the proof

rather than the specific conditions we state above that are needed to establish this result.

Such expansions can also be established for data with serial dependence but we do not

pursue this direction here as it does not add any insights to our main message.

To state the next result introduce some additional notation. For square matrices M of

dimension p+ 1 consider the following block structures

M =

[
M11 M12

M21 M22

]

with M11 ∈ R.

Theorem 2.1. Assume that Assumption 2.1 holds and that β1 = β∗,β2 = β∗ + T−1/2∆,

∆ ̸= 0. Let A = Aγ∗, B = V ar(∇γL(x, Y ;γ∗)) and assume that B is of full rank. Then√
T (β̂ − β∗)

d→ N(0,Σβ) where Σβ = [A−1BA−1]22. Assume that Σ̂ = Σβ + oP(1). Then

lim
T→∞

P
(
k̂PAM = 1

)
≥ lim

T→∞
P
(
k̂BM = 1

)
. (3)

Define D = [[A−1]22]
−1, C := B22+

B11

A2
11
A21A

⊤
21− 2

A21B⊤
21

A11
. Equality in (3) holds if and only

if C1/2∆ is a scalar multiple of C−1/2D∆. Further, if KT → K entry-wise in probability

for a fixed matrix K with finite entries

lim
T→∞

P
(
k̂PAM = 1

)
≥ lim

T→∞
P
(
k̂PAM,KT = 1

)
.

A similar result under even weaker conditions continues to hold if there is no individual-

specific α and all parameters are estimated globally. The proof of this result is similar in

spirit but even simpler and we omit the details for the sake of brevity.

Note that when L is a correctly specified negative log-likelihood function, standard

regularity conditions yield A = B which further implies C = D by the block matrix

inversion formula. In this case C−1/2D = C1/2 so the asymptotic probabilities for rules (1)

and (2) selecting the correct center are equal for any ∆. Correct specification of L is

sufficient but not necessarry. The equality C = D continues to hold in the case where

A is a scalar multiple of B which is the case in least squares or quantile regression with

homoscedastic errors, for instance. However, in general models such as quantile regression

or ordinary least squares estimation with heteroscedasticity or in the presence of temporal
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dependence, A is not a scalar multiple of B in general and thus also C ̸= D. Since rule (2)

is always at least as good as (1) asymptotically, this suggests that (2) would be preferable

whenever the asymptotic covariance matrix can be estimated consistently, even when (1)

is feasible.

The second statement of Theorem 2.1 implies that the proposed scaling with Σ̂−1/2 is

asymptotically optimal among all possible choices of scale matrix that converge to a fixed

matrix.

Although the results presented above only work in a very idealized setting and can not

be directly utilized to analyze the performance of rules (1) and (2) when applied inside

an iterative procedure, the findings strongly suggest that using the objective function in

iteration for group centers might not be optimal from a statistical perspective. Instead,

using information on the (asymptotic) variance of the estimators β̂i can lead to more

efficient procedures. This motivates the ideas in the following section.

Remark 2.1. The key to proving the first statement of Theorem 2.1 is an asymptotic

expansion for the probabilities appearing in (3). Specifically, we derive the following limits

P (k̂PAM = 1) → Φ(∥Σ−1/2
β ∆β∥2/2).

in equation (30) and

P (k̂BM = 1) → Φ
(∆[[A−1]22

]−1
∆

2(∆⊤C∆)1/2

)
in equation (31) in the proof of Theorem 2.1. This is where the matrix C comes into play.

Given those expansions, (3) follows by an application of the Cauchy-Schwarz inequality as

follows

∆⊤D∆

(∆⊤C∆)1/2
=

∆⊤C1/2C−1/2D∆

(∆⊤C∆)1/2
≤ ∥∆⊤C1/2∥2∥C−1/2D∆∥2

(∆⊤C∆)1/2
= (∆⊤Σ−1

β ∆)1/2.

This inequality is strict unless C1/2∆ is a scalar multiple of C−1/2D∆.

2.3 Proposed methodology through the lens of clustering

The discussion up to this point focused on variants of the k-means algorithm for grouping

individuals. However, k-means is not the only clustering method which is available and

other approaches have been observed to have superior performance in certain settings.

Many methods of this type work with general measures of dissimilarity between units and

attempt to cluster units that are most similar to each other. Given the developments in

the previous sections, a natural measure of dissimilarity is given by

V̂ij := ||Σ̂−1/2
i,j (β̂i − β̂j)||2 , (4)
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where typically Σ̂i,j = Σ̂i + Σ̂j and Σ̂i estimates the variance of β̂i − β. Note that for

consistent estimators β̂i, Σ̂i will typically converge to zero. This measure of dissimilarity

can be computed based on summary statistics and variance estimates and does not require

individual level data. The importance of taking variance information into account was

illustrated in a simplified setting in Theorem 2.1 and is also confirmed in our simulations.

As pointed out by the Associate Editor, using covariance estimates or diagonal versions

thereof for Σ̂i has the added benefit of making the procedure scale invariant.

Two popular clustering approaches in the literature that work with general measures of

dissimilarity are k-medoids Schubert and Rousseeuw (2019) and spectral clustering Ng et al.

(2002); Chung and Graham (1997); von Luxburg (2007). Similarly to k-means clustering,

the k-medoids problem is NP-hard to solve exactly. In practice, approximate solutions

to this problem are obtained by employing the algorithm Partitioning Around Medoids

(PAM) Reynolds et al. (2006); Schubert and Rousseeuw (2019); Kaufman and Rousseeuw

(2005). We refer to (Kaufman and Rousseeuw, 2005, Section 4.1, Chapter 2) for more

details about the PAM algorithm. As we observe in simulations, using the PAM algorithm

with dissimilarity measure (4) can already lead to substantial gains relative to the iterative

k-means style approaches of Lin and Ng (2012); Bonhomme and Manresa (2015); Zhang

et al. (2019a). However, extensive simulations showed that in all settings considered spectral

clustering leads to even more accurate group estimation than PAM, and hence we focus on

spectral clustering in the theoretical developments that follow. Simulation evidence for the

superiority of spectral clustering over to PAM is presented in Section 4.

Since there are many variations of spectral clustering that are available in the literature,

a detailed description of the specific version we use is given in Algorithm 14.

Algorithm 1 Spectral Clustering

Input: Number of clusters G∗, dissimilarity matrix V̂ := (V̂ij) computed in (4).
Output: Clusters Î1, . . . , ÎG∗ .

1: Compute the empirical adjacency matrix Â ∈ Rn×n with entries Âij := e−V̂ij for i ̸= j
and Âij = 1 for i = j.

2: Compute the empirical degree matrix D̂ := diag(D̂1, . . . , D̂n), where D̂i :=∑n
j=1 Âij , i = 1, . . . , n.

3: Calculate the normalized graph Laplacian L̂ := D̂−1/2(D̂ − Â)D̂−1/2.
4: Find G∗ orthonormal eigenvectors corresponding to the G∗ smallest eigenvalues of L̂,

and form the matrix Ẑ ∈ Rn×G∗
by stacking those vectors in columns. Normalize the

rows of Ẑ, to have ℓ2-norm 1 and denote the resulting matrix by Û .
5: Apply standard k-means clustering with G∗ clusters taking the rows of Û as input

vectors, and return the clusters Î1, . . . , ÎG∗ .

To intuitively understand the motivation behind the above algorithm observe that the

dissimilarities V̂ij can be expected to be large if individuals i, j are from different groups.

4We do not claim any novel contributions to this specific algorithm, the details and explanation are
presented here for the reader’s convenience.

9



In the limit T → ∞ those distances will tend to infinity, and thus Âij ≈ 0 whenever i, j

are from different groups. Similarly, V̂ij can be expected to be bounded when i, j are in

the group, and thus Âij will usually be bounded away from zero for such pairs. Thus after

rearranging the order of individuals we see that V̂ij will be approximately block diagonal

with non-zero entries in the blocks. It is now straightforward to see that L̂ will have

exactly G∗ zero eigenvalues if there are G∗ such blocks and all other eigenvalues will be

strictly positive. Moreover, the eigen-space corresponding to zero eigenvalues will have an

orthogonal basis consisting of vectors that have non-zero entries in the exact components

corresponding to different groups, see also the discussion surrounding equation (32) and

Lemma 9.1 in the supplementary material. For a more detailed discussion of the intuition

and alternative formulations of the spectral clustering algorithm see von Luxburg (2007)

and the literature cited therein. Although the last step of the algorithm uses the standard

k-means algorithm, we note that it is applied on the rows of Û which is a standard clustering

problem with n data points in Euclidean space. No refitting of models on individual level

or large scale models as in Bonhomme and Manresa (2015) is required.

Some additional comments on specific choices that we made in Algorithm 1 are in or-

der. First, in step (1), we apply an exponential kernel to the dissimilarity matrix. Other

monotone transformations can be used, for instance the Gaussian kernel is another popular

choice. Our simulation exercise confirms that both the exponential kernel and the Gaus-

sian kernel perform similarly. Second, in step (3), we apply a normalization to the graph

Laplacian for the spectral clustering analysis. A line of seminal works (von Luxburg et al.

(2004) and von Luxburg et al. (2008)) investigate the convergence of the normalized and

unnormalized versions of the popular spectral clustering algorithm. They demonstrate that

the normalized spectral clustering converges under very general conditions, while the unnor-

malized spectral clustering is only consistent under strong additional assumptions, which

are not always satisfied in real data. These works give strong evidence for the superiority

of normalized spectral clustering.

Remark 2.2. Wang and Su (2021) also observe that the spectral decomposition of a certain

matrix that is derived from individual-specific estimators contains information on the latent

group structure. However, there are several crucial differences between their and our ap-

proach. Most importantly, we explicitly take into account the uncertainty that is associated

with individual-specific estimators while Wang and Su (2021) work directly with raw estima-

tors. Moreover, Wang and Su (2021) do not apply spectral clustering directly but rather use

certain eigenvectors as input to a binary segmentation algorithm. For a simulation-based

comparison with that method, see section 4.1.

The idea to use spectral clustering for grouping different entities also appeared in van

Delft and Dette (2021). The setting in the latter paper is very different from ours since

van Delft and Dette (2021) consider grouping locally stationary functional time series and

do not take into account estimation uncertainty when constructing their dissimilarity mea-

10



sure between observations. Still, some parts of our theoretical analysis under high-level

assumptions are related to theirs, additional comments on this can be found in Remark 3.1.

So far we discussed an algorithm for assigning individuals to G∗ groups for any given G∗.

In some settings, G∗ will be chosen based on domain knowledge about the problem at hand.

If no such knowledge is available, we propose to select the G∗ that maximizes the relative

eigen–gap (von Luxburg (2007)) of a modified graph Laplacian L̃. More precisely, consider

the scaled dissimilarity Ṽij :=
2√

logn log T
V̂ij . Use Ṽij as input to Algorithm 1 and obtain L̃

as output from step 3 of that algorithm. Consider the values λ̃i := 1− λ̂i, i = 1, . . . , n, with

λ̂1 ≤ · · · ≤ λ̂n denoting the ordered eigenvalues of L̃. The estimated number of groups is

Ĝ = argmax
g=1,...,n−1

|λ̃g+1 − λ̃g|
λ̃g+1

, (5)

The motivation for using the scaling in Ṽij is that, under technical assumptions made later,

this scaling ensures Ṽij → 0 for all i, j in the same group. Without this scaling, the heuristic

tends to have a small probability of not selecting a correct number of groups as T increases.

Similar heuristic eigen-gap methods for estimating the number of groups can also be

found in van Delft and Dette (2021); John et al. (2020); Little et al. (2020), among many

others.

Remark 2.3. There are at least two other popular approaches to selecting the number of

groups or equivalently the number of clusters. The first type of method combines cross-

validation with the idea that “true” cluster assignment should be stable under small pertur-

bations of the data. This idea was exploited in Wang (2010) for selecting the number of

clusters in a general setting and adapted by Zhang et al. (2019a) to selecting the number

of groups for panel data quantile regression. However, as pointed out in Ben-David et al.

(2006), methods that select the number of clusters based on stability can fail for certain

cluster configurations. One such example will be given in the simulation section, see Model

2 in section 3.2.2 . The second drawback of such methods is that clustering stability can only

be defined when there are at least two clusters. Hence, by construction, stability methods

always select at least two clusters and fail if there is only a single cluster in the data.

The second method uses information criteria which select the number of clusters that

maximize a sum of objective function plus penalty, see for instance Su et al. (2016); Gu

and Volgushev (2019); Wang and Su (2021) among many others. The main drawback of

such approaches is that information criteria need to be derived case by case as they differ

depending on the specific form of the objective function making them difficult to use for

applied researchers. We note that this is different from the classical setting involving AIC

and BIC in a maximum likelihood framework where only the number of parameters in the

model matters. Moreover, computation of such information criteria typically requires access

to raw data which might not always be available as in our second application. The infor-
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mation criteria method also involves the heaviest computation burden because to construct

the information criteria statistics, all candidate models with varying values of G need to be

estimated which can be costly (See computation time comparison in Section 4.1).

We also conduct an extensive simulation comparing different methods of selecting the

number of groups in Section 4.1 and 4.3. Results show that our heuristic approach works

reasonably well in all settings considered. Unsurprisingly, we also find that there is no

universally dominating method.

2.4 Examples

The setting above is generic and so far we did not assume anything about the specific

structure of the estimators. In the remainder of this section, we provide several illustra-

tive examples of model specifications that were considered previously and show how those

examples fit into the proposed framework.

Example 2.1 (Logistic regression regression with individual-specific intercepts and grouping

on slopes). Consider binary responses Yit ∈ {0, 1} and assume that

P(Yit = 1) =
exp(αi + x⊤

itβi)

1 + exp(αi + x⊤
itβi)

=
exp(z⊤itγi)

1 + exp(z⊤itγi)
,

where z⊤it = (1,x⊤
it) and γ⊤

i = (αi,β
⊤
i ). We leave the αi ∈ R unrestricted and assume that

certain sub-vectors of βi ∈ Rp have a group structure.

Su et al. (2016) considers a similar model; they assume a Gaussian link function for

the binary response. Ando et al. (2022) also considers the logit model with individual

specific slope coefficients and a factor structure on the individual fixed effects. Their way

of modeling unobserved heterogeneity is different from ours as we focus on group patterns.

Example 2.2 (Quantile regression with individual-specific intercepts and grouping on slopes).

Given the observations are (xit, Yit), assume that the conditional quantile function of the

response Yit given covariates xit for individual i satisfies

qi,τ (zit) = αi(τ) + x⊤
itβi(τ) = z⊤itγi(τ) ,

where αi(τ) ∈ R are unrestricted and we search for a group structure on βi(τ) ∈ Rp.

This setting was also considered in Zhang et al. (2019a), Leng et al. (2023). Zhang et al.

(2019a) propose an iterative algorithm based on the k-mean algorithm in Bonhomme and

Manresa (2015) to learn group structure. Leng et al. (2023) use a k-means type of iterative

algorithm, but allow for time fixed effect while grouping both the individual fixed effects

and the slope coefficients. This model will be considered in Section 5 where coefficients of

the panel quantile regression model will be utilized to analyze heterogeneous relationship

between income and pollution level among different states in the US.
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Example 2.3 (Quantile regression with joint slope and grouping on intercepts). Assume

that the conditional quantile function of response Yit given covariates xit for individual i is

qi,τ (xit) = αi(τ) + x⊤
itβ(τ) ,

where the vector of slope coefficients β(τ) ∈ Rp is assumed to be the same across individuals.

This model was first considered in Koenker (2004), who proposed to regularize the

individual fixed effects via ℓ1 penalization. Lamarche (2010) considers the optimal choice

of the penalty parameters in this approach. There has been an active literature on panel

data quantile regression, mainly focusing on estimation of the common parameters β(τ)

(e.g., Kato et al. (2012), Galvao and Kato (2016), Harding and Lamarche (2017) and

Galvao et al. (2020)). Zhang et al. (2019b) and Gu and Volgushev (2019) consider group

structure on αi(τ) ∈ R.

3 Theoretical Analysis

3.1 Generic spectral clustering results

In this section, we provide high-level conditions on the estimators β̂i ∈ Rp and Σ̂i,j ∈ Rp×p

which ensure that the correct group structure is recovered with probability tending to one as

n, T tend to infinity. Formally, assume that the true coefficients β1, ...,βn take G∗ different

values, say β∗
1, ...,β

∗
G∗ and the true group membership is given by

βi = β∗
k ⇔ i ∈ I∗k , k = 1, ..., G∗ ,

where I∗k ⊆ {1, . . . , n}, k = 1, . . . , G∗ denote the true underlying groups. Naturally, we

assume I∗k ∩ I∗ℓ = ∅ for k ̸= ℓ. We begin by providing an analytical non-asymptotic

result which guarantees perfect classification in terms of certain abstract quantities. More

precisely, define

A1,max := max
i,j in different groups

Âij ,

A0,min := min
i,j in same group

Âij

A0,max := max
i,j in same group

Âij .

Theorem 3.1. A sufficient condition for perfect classification is

A1,max

A0,min

√
A3

0,max

A3
0,min

≤ 2−8.5(nG∗)−1/2

√
mink |I∗k |3
nmaxk |I∗k |2

(6)

Theorem 3.1 holds for fixed n, T and is proved in a purely analytic way. The result
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does not assume anything about temporal or cross–sectional dependence. On a high level,

this result corresponds to intuition as the inequality in (6) becomes more difficult to satisfy

for a larger number of groups G∗ or when groups have more unbalanced sizes leading to a

larger ratio maxk |I∗k |/mink |I∗k |. Having more individuals (larger n) also intuitively makes

the problem harder. In order to achieve perfect classification, a large minimal dissimilarity

between individuals from different groups, i.e. a small A1,max, relative to A0,min, is required.

The ratio
A0,max

A0,min
describes the spread of similarity measures among individuals that belong

to the same group. Having a large spread here makes the problem harder, which again

corresponds to intuition. Note that this is only a sufficient condition, and sharper results

might be possible. However, we are not aware of any necessary and sufficient conditions

guaranteeing the success of spectral clustering or sharp expansions for the proportion of

correctly grouped units.

Remark 3.1. The proof relies on the type of arguments that appeared in earlier work on

spectral clustering, in particular Ng et al. (2002), von Luxburg (2007) and van Delft and

Dette (2021). However, the setting we consider is different from any of the works mentioned

above and the arguments need to be modified accordingly. The work of van Delft and Dette

(2021) is closest in spirit, but our analysis is complicated by the fact that we allow the

number of individuals n to diverge while the number of entities to be clustered was fixed in

van Delft and Dette (2021). In order to deal with this complication, we leverage the fact that

our construction of the similarity matrix gives rise to the different order for the diagonal

blocks and off-diagonal blocks of the empirical Laplacian matrix. Taking advantage of this

difference in order together with spectral information contained in the diagonal blocks of the

empirical Laplacian matrix allows us to handle a diverging number of individuals.

Below, we will provide more specific assumptions on the minimal separation of group

centers and quality of initial estimators which guarantee that the probability of the events

in (6) tend to one. In the assumptions below, we allow for data from triangular arrays

where the values of βi and Σi,j change with n, T . To keep the presentation simple this is

not emphasized in the notation. We also allow the number of groups G∗ to grow with n.

Assumption 3.1. The estimators β̂i are uniformly consistent with rate an,T , i.e.

an,T := sup
i∈{1,...,n}

||β̂i − βi||2 = oP(1).

Assumption 3.2. There exists a sequence bT → ∞ and matrices Σi,j (which may depend

on n, T ) such that

sup
i,j

∣∣∣∣∣∣∣∣∣bT Σ̂i,j − Σi,j

∣∣∣∣∣∣∣∣∣
2
= oP(1) ,

where |||·|||2 denotes the spectral norm. Moreover, assume

0 < m < λmin(Σi,j) ≤ λmax(Σi,j) < M <∞ ∀i ̸= j ∈ {1, . . . , n} (7)
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with some fixed constants 0 < m ≤M <∞ that do not depend on n, T .

Assumptions 3.1 and 3.2 impose minimal restrictions on the quality of the initial esti-

mates β̂i and Σ̂i,j . We emphasize that the matrices Σi,j in Assumption 3.2 are not required

to be equal to the true asymptotic covariance matrices of β̂i − β̂j for the theory to work.

This is a useful result because in some environments researchers only have access to indi-

vidual estimates and the associated coordinate-by-coordinate standard deviation, but the

covariances estimate are missing. In such cases, our method can still be used by setting the

off-diagonal elements of Σ̂i,j to zero. Assumption 3.2 will hold provided that the variance

estimators on the diagonal converge to non-negative values. While setting off-diagonal en-

tries to zero might not be optimal in the asymptotic setting of Theorem 2.1, simulations

indicate that in finite samples the performance can be close to using consistent estimates of

the covariance. When covariances are difficult to estimate, using only the diagonal entries

can even enhance finite sample performance as we will see in Section 4.1. Similarly, this

assumption can be satisfied if there is dependence across individuals but this dependence

is ignored when estimating the covariance of β̂i − β̂j . Again, ignoring this dependence will

not lead to procedures with best possible performance but might work reasonably well if

the dependence across individuals is mild.

In all examples we consider later the individuals will be assumed independent and the

estimators β̂i will satisfy
√
T (β̂i − βi)

D−→ Np(0,Σi), i = 1, . . . , n. By independence among

individuals, the weak convergence above holds jointly for any given pair of individuals and

the corresponding limits will be independent. In this case, we will set bT = T , Σi,j :=

Σi +Σj , Σ̂i,j := Σ̂i + Σ̂j where T Σ̂i will be consistent estimators of Σi.

The bound in an,T is uniform over a potentially growing number of individuals n and

typically be of the form an,T = OP(
√
T−1 log n) where the additional

√
log n factor is to

ensure uniformity.

We now have the following result

Theorem 3.2. Under Assumptions 3.1, 3.2 let ∆min := mink ̸=ℓ ∥β∗
k − β∗

ℓ ∥2. Assume that

an,T = oP(∆min), n ≥ 3 and

log n = o(b
1/2
T ∆min). (8)

Then the true group structure is recovered with probability tending to one as T → ∞.

In order to achieve perfect classification with probability going to one, Theorem 3.2

requires lower bounds on the minimal separation ∆min which is required to grow faster

than the uniform estimation error and than b
−1/2
T log n. In the special setting discussed

above the Theorem where bT = T, an,T = OP(
√
T−1 log n), this corresponds to assuming

that ∆min ≫ T−1/2 log n. For groups with fixed separation across centers where ∆min

is a constant, this leads to the requirement log n = o(T 1/2) which allows the number of

individuals to grow very quickly with n. If the minimal separation tends to zero, the

requirements on log n relative to
√
T become more stringent.
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Given the non-asymptotic bound in (6), it would also be possible to conduct a more

detailed analysis in the case where the orders of ∆min and an,T match but ∆min is sufficiently

large so as to dominate a constant multiple of an,T with a certain probability. Such an

analysis would reveal more nuanced view on the role of G∗ and maxk |I∗k |,mink |I∗k | but
does not lead to any specific insights except that large G∗ and imbalanced groups make the

problem harder.

3.2 Verification of high level conditions for specific examples

In this section, we provide specific conditions in Example 2.1–Example 2.2 which guarantee

that the high-level conditions 3.1 and 3.2 are satisfied. The set of examples that we consider

is by no means exhaustive for the possible applications of our methodology. Rather, it is

intended as a demonstration that our high-level conditions can be verified in several different

settings including the presence of individual-specific and joint parameters, binary outcomes,

and non-smooth objective functions.

3.2.1 Logistic regression with individual-specific intercepts and grouping on

the slopes (Example 2.1)

The coefficient vector γ⊤
i := (αi,β

⊤
i ) is estimated via maximum likelihood, i.e.

γ̂i := argmax
γ∈Rp+1

1

T

T∑
t=1

[
Yitz

⊤
itγ − log(1 + exp(z⊤itγ))

]
, i = 1, . . . , n .

The exact form of the asymptotic variance differs depending on whether the data exhibit

temporal dependence. We begin by discussing the case that the observations (xit, Yit) are

i.i.d. across t and independent across i and discuss the case with temporal dependence

across t later in this section. Throughout, the values of γ∗
i are allowed to depend on n, T .

Recall that in the i.i.d. case under standard assumptions the estimator γ̂i is asymptot-

ically normal with asymptotic variance given by

Σ̃i =

(
E
[ ez

⊤
i1γ

∗
i

(1 + ez
⊤
i1γ

∗
i )2

zi1z
⊤
i1

])−1

.

The canonical plug-in estimator of Σ̃i takes the form

ˆ̃
Σi =

(
1

T

T∑
t=1

ez
⊤
itγ̂i

(1 + ez
⊤
itγ̂i)2

zitz
⊤
it

)−1

.

Denote by Σ̌i the lower p× p sub-matrix of
ˆ̃
Σi. Then we set

Σ̂i,j := T−1(Σ̌i + Σ̌j) . (9)
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Consider the following assumptions.

Assumption 3.3. Assume that for a constant L > 0 independent of i, n, T

1/L <
{
λmin

(
E
[
zi1z

⊤
i1

])}
<
{
λmax

(
E
[
zi1z

⊤
i1

])}
< L

and there exists κ1 <∞ independent of n, T such that supi ∥γ∗
i ∥ ≤ κ1.

Assumption 3.4. Assume supi,t{||zit||2} < κ < ∞ a.s. for a constant κ that does not

depend on n, T .

Assumption 3.3 places mild restrictions on the design matrix. The boundedness condi-

tion in Assumption 3.4 is made for the sake of simplicity; it can be relaxed to designs with

bounded moments at the cost of additional technicalities in the proofs.

Theorem 3.3. Assume Assumptions 3.3 and 3.4 hold, that data are i.i.d. across t and

independent across i, and T → ∞, log n/T → 0.

(i) It holds that

sup
i∈{1,...,n}

∥γ̂i − γ∗
i ∥2 = OP

(√
log n

T

)
. (10)

(ii) Under the same assumptions the estimators Σ̂i,j in (9) satisfy

sup
i ̸=j

∣∣∣∣∣∣∣∣∣T Σ̂i,j − Σi,j

∣∣∣∣∣∣∣∣∣
2
= oP(1) , (11)

where Σi,j denotes the lower p× p submatrix of Σ̃i + Σ̃j. Furthermore Σi,j satisfy (7) .

Theorem 3.3 implies that Assumptions 3.1 and 3.2 hold with an,T =
√
T−1 log n, bT = T

and Σi,j corresponding to the scaled asymptotic variance matrix of β̂i−β̂j . In particular, (8)

is satisfied provided that ∆min ≫ (log n)/
√
T .

Note that the results directly imply that Assumptions 3.1 and 3.2 continue to hold

for any sub-vectors of γ̂i. This covers settings where we want to leave some coefficients

individual-specific and only perform grouping on a part of the full coefficient vector.

We now proceed to consider the case of temporal dependence.

Assumption 3.5. For each i ≥ 1, the process (xit, Yit)t∈Z is strictly stationary and β-

mixing. Let βi(j) denote the β-mixing coefficient of the process (xit, Yit)t∈Z. Assume that

there exist constants bβ ∈ (0, 1), Cβ > 0 independent of i, n, T such that

sup
i
βi(j) ≤ β(j), ∀j ≥ 1,

where β(j) := Cβb
j
β.

Such exponential mixing assumptions are often made in the literature, see for instance

Kato et al. (2012) and Galvao et al. (2020) in the context of quantile regression.
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The available data (xit, Yit)t=1,...,T are an observed stretch from the strictly stationary

process (xit, Yit)t∈Z. Under this assumption, the asymptotic variance of the estimator γ̂i is

of the form

Σ̃i = B−1
i HiB

−1
i

with

Bi := E

[
ez

⊤
i1γ

∗
i

(1 + ez
⊤
itγ

∗
i )2

zi1z
⊤
i1

]

Hi := E
[
wi1w

⊤
i1

]
+

∞∑
j=1

E
[
wi1w

⊤
i,1+j +wi,1+jw

⊤
i1

]
,

where wit := Yitzit− ez
⊤
itγ

∗
i zit

1+ez
⊤
it

γ∗
i
. A possible sandwich estimator of the asymptotic variance Σ̃i

takes the form
ˆ̃
Σi = B̂−1

iT ĤiT B̂
−1
iT ,

where

B̂iT =
1

T

T∑
t=1

ez
⊤
itγ̂i

(1 + ez
⊤
itγ̂i)2

zitz
⊤
it

ĤiT =
1

T

T∑
t=1

ŵitŵ
⊤
it +

∑
1≤j≤mT

(
1− j

T

)( 1

T

T−j∑
t=1

(
ŵitŵ

⊤
i,t+j + ŵi,t+jŵ

⊤
it

))

ŵit = Yitzit −
ez

⊤
itγ̂izit

1 + ez
⊤
itγ̂i

,

and mT > 0 denotes the bandwidth parameter tending to be infinity as T goes to infinity.

Denote by Σ̂i the lower p× p sub-matrix of
ˆ̃
Σi. Then we set

Σ̂i,j := T−1(Σ̂i + Σ̂j) . (12)

Theorem 3.4. Let Assumptions 3.3, 3.4 and 3.5 hold. Assume T grows at most polyno-

mially in n and (log n)3 = o(T ). Assume that the smallest and largest eigenvalues of Hi

are bounded away from zero an infinity uniformly in n, T .

(i) It holds that

sup
i∈{1,...,n}

∥γ̂i − γ∗
i ∥2 = OP

(√
log n

T

)
. (13)

(ii) In addition, if mT → ∞ as T → ∞ and
m3

T log(n∨mT )
T = o(1), the estimators Σ̂i,j satisfy

sup
i ̸=j

∣∣∣∣∣∣∣∣∣T Σ̂i,j − Σi,j

∣∣∣∣∣∣∣∣∣
2
= oP(1) , (14)
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where Σi,j denotes the lower p× p submatrix of Σ̃i + Σ̃j. Furthermore Σi,j satisfy (7) .

Theorem 3.4 implies that Assumptions 3.1 and 3.2 hold with an,T =
√
T−1 log n, bT = T

and Σi,j corresponding to the scaled asymptotic variance matrix of β̂i − β̂j . In particu-

lar, (8) is satisfied provided that ∆min ≫ (log n)/
√
T and we need the additional condition

(log n)3 = o(T ).

3.2.2 Quantile regression with individual-specific intercepts and grouping on

the slopes (Example 2.2)

Consider the quantile regression panel data model

qi,τ (zit) = z⊤itγ
∗
i (τ), t = 1, . . . , T, i = 1, . . . , n ,

where qi,τ (zit) := inf
{
y : P(Yit < y|zit) ≥ τ

}
is the conditional τ - quantile of Yit given zit.

We will first assume that (zit, Yit) are i.i.d. across t for each i and independent across i.

An extension to temporal dependence as in Assumption 3.5 will be considered below. The

distribution of (zit, Yit) and the values of γi are allowed to vary with n, T .

Consider the quantile regression estimator γ̂⊤
i = (α̂i, β̂

⊤
i ) :

γ̂i := argmin
γ∈Rp+1

1

T

T∑
t=1

ρτ (Yit − z⊤itγ) ,

where ρτ (u) := {τ − 1l(u ≤ 0)}u denotes the check function.

Under mild regularity assumptions (in particular, this is true under Assumptions 3.6–

3.8 given below) this estimator is asymptotically normal with asymptotic covariance matrix

of the form Σ̃i = B−1
i HiB

−1
i where

Hi := τ(1− τ)E[zi1z⊤i1], Bi = E[fYi1|zi1(qi,τ (zi1) | zi1)zi1z
⊤
i1] , (15)

with fYi1|zi1(y|z) as the density function of the conditional distribution FYi1|zi1(y|z).
A common way to estimate Σ̃i uses the Hendricks-Koenker sandwich covariance matrix

estimator (Hendricks and Koenker (1992)) which takes the following form

ˆ̃
ΣiT := B̂−1

iT ĤiT B̂
−1
iT , with (16)

B̂iT :=
1

T

T∑
t=1

f̂itzitz
⊤
it , ĤiT := τ(1− τ)

1

T

T∑
t=1

zitz
⊤
it , f̂it :=

2dT

z⊤it(γ̂i(τ + dT )− γ̂i(τ − dT ))
.

Here dT denotes a smoothing parameter that should converge to zero at an appropriate
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rate. Let Σ̂iT denote the lower p× p submatrix of
ˆ̃
ΣiT and set

Σ̂i,j := T−1
(
Σ̂iT + Σ̂jT

)
. (17)

We now verify Assumptions 3.1 and 3.2, under the following conditions.

Assumption 3.6. Assume that ∥zit∥2 ≤ κ <∞, and that cλ ≤ λmin(E[zitz⊤it ]) ≤ λmax(E[zitz⊤it ]) ≤
Cλ holds uniformly in i for some fixed constants cλ > 0 and κ,Cλ <∞ that are independent

of n, T .

Assumption 3.7. Define Z := [−κ, κ]p+1.The conditional distribution FYi1|zi1(y|z) is twice
differentiable w.r.t. y, with the corresponding derivatives fYi1|zi1(y|z) and f ′Yi1|zi1(y|z). As-

sume that

sup
i

sup
y∈R,z∈Z

|fYi1|zi1(y|z)| ≤ fmax <∞, sup
i

sup
y∈R,z∈Z

|f ′Yi1|zi1(y|z)| ≤ f ′ <∞.

where fmax, f ′ are independent of n, T .

Assumption 3.8. Denote by T an open neighborhood of τ . Assume that uniformly across

i, there exists a constant fmin < fmax independent of n, T such that

0 < fmin ≤ inf
i

inf
η∈T

inf
z∈Z

fYi1|zi1(qi,η(z)|z) .

Assumption 3.9. Assume that dT = o(1), as T → ∞ and

log(nT )

Td
4/3
T

= o(1) .

Assumptions 3.6-3.9 are fairly standard in the quantile regression literature and have

been imposed in Kato et al. (2012) and Galvao et al. (2020) among many others.

Theorem 3.5. Let Assumptions 3.6-3.8 hold. Assume log n = o(T ) and min(n, T ) → ∞.

Assume that the data are i.i.d. across t and independent across i.

(i) It holds that

sup
i∈{1,...,n}

∥γ̂i − γ∗
i ∥2 = OP

(√
log n

T

)
.

In particular, Assumption 3.1 holds with an,T =
√

logn
T provided that log n = o(T ).

(ii) If in addition to the above Assumption 3.9 holds, then Assumption 3.2 is also satisfied

with bT := T , Σi,j denoting the lower p× p sub-matrix of Σ̃i + Σ̃j , and Σ̂i,j defined in (20).

Theorem 3.3 implies that Assumptions 3.1 and 3.2 hold with an,T =
√
T−1 log n, bT = T

and Σi,j corresponding to the scaled asymptotic variance matrix of β̂i − β̂j .
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Similarly to the discussion in Section 3.2.1, the results directly imply that Assump-

tions 3.1 and 3.2 continue to hold for any sub-vectors of γ̂i.

We now consider the dependent case. Since we need to account for the temporal depen-

dence structure, the asymptotic covariance matrix for the estimator γ̂i is now of the form

Σ̃i = B−1
i H̃iB

−1
i where the matrix Bi is defined in (15) as in the independent case, whereas

the matrix H̃i is defined in the following way incorporating the dependence

H̃i := τ(1− τ)E[zi1z⊤i1] +
∞∑
j=1

E[wi1w
⊤
i,1+j +wi,1+jw

⊤
i1] ,

with wi1 = zi1
(
τ − 1l(Yit ≤ qi,τ (zi1))

)
. This motivates the following generalized version of

the Hendricks-Koenker sandwich covariance matrix estimator
ˆ̃
ΣiT

ˆ̃
ΣiT := B̂−1

iT Ĥ
′
iT B̂

−1
iT , (18)

where B̂iT := 1
T

∑T
t=1 f̂itzitz

⊤
it is defined in the same way as in the independent case and

the estimator Ĥ ′
iT is defined via

Ĥ ′
iT := τ(1− τ)

1

T

T∑
t=1

zitz
⊤
it +

∑
1≤j≤mT

(
1− j

T

)( 1
T

∑
t∈Tj

(ŵitŵ
⊤
i,t+j + ŵi,t+jŵ

⊤
it )
)

Here, Tj := {1 ≤ t ≤ T − j}, mT > 0 denotes the bandwidth parameter tending to be

infinity as T goes to infinity, and

ŵit := zit

(
τ − 1l

(
Yit ≤ γ̂i(τ)

⊤zit
))
.

To establish the asymptotic consistency of the covariance estimator, we need following

additional assumptions.

Assumption 3.10. For each i = 1, ..., n and j > 1, the random vector (Yi1, Yi,1+j) has

a density conditional on (zi1, zi,1+j) and this density is bounded uniformly across i, j and

n, T .

A similar assumption was made in Kato et al. (2012).

Assumption 3.11. Assume that dT = o(1) and mT → ∞ as T → ∞, and

log n

Td2T
= o(1),

m3
T log n

T
= o(1) .

This assumption is similar to Assumption 3.9 and imposes a restriction on the relative

growth of the time dimension compared to the number of individuals.
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Theorem 3.6. Let Assumptions 3.6-3.8, and 3.5-3.10 hold. Assume T grow at most poly-

nomial in n, (log n)3 = o(T ), and min(n, T ) → ∞. Assume that the smallest and largest

eigenvalues of H̃i are bounded away from zero and infinity uniformly in i, n, T .

(i) It holds that

sup
i∈{1,...,n}

∥γ̂i − γ∗
i ∥2 = OP

(√
log n

T

)
. (19)

In particular, Assumption 3.1 holds with an,T =
√

logn
T .

(ii) If in addition to the above Assumption 3.11 holds, then Assumption 3.2 is also satisfied

with bT := T , Σi,j denoting the lower p × p sub-matrix of Σ̃i + Σ̃j and Σ̂iT denoting the

lower p× p submatrix of

Σ̂i,j := T−1
(
ˆ̃
ΣiT +

ˆ̃
ΣjT

)
. (20)

3.2.3 Quantile regression with common slope and grouping on the intercepts

(Example 2.3)

Consider the quantile regression panel data model

qi,τ (xit) = α∗
i (τ) + x⊤

itβ
∗(τ), t = 1, . . . , T, i = 1, . . . , n ,

where qi,τ (xit) := inf
{
y : P(Yit < y|xit) ≥ τ

}
denotes the conditional τ - quantile of Yit

given xit. In contrast to the setting in Section 3.2.2, we assume that the slope coefficient

β∗ is common across individuals and are only interested in grouping the intercepts. This

model was considered in Gu and Volgushev (2019), who used a lasso-type penalty to enforce

grouping on the intercepts α∗
i . The latter paper also demonstrated that putting this kind

of regularization on α∗
i can result in improved estimation of β∗ compared to leaving α∗

i

unrestricted.

Assume that (xit, Yit) are i.i.d. across t for each i and independent across i. Since

only intercepts contain the grouping information, we aim to use the estimates for α∗
i , and

their variance estimates to construct the similarity matrix. At this point, there are two

possibilities for estimating α∗
i : (1) run individual-specific quantile regressions ignoring the

fact that β∗ is common across individuals or (2) put all individuals into a single large model

in order to borrow information across individuals to improve the efficiency in estimating

the joint coefficient vector β∗.

Approach (1) has computational advantages, especially if n is large, but can also result in

a loss of efficiency. The theoretical treatment of (1) easily follows from minor modifications

of the results in Section 3.2.2, and we hence focus on the second approach. Define

(
α̃1(τ), · · · , α̃n(τ), β̃(τ)

)
:= argmin

α1,...,αn,β

1

nT

n∑
i=1

T∑
t=1

ρτ (Yit − αi − x⊤
itβ) . (21)
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In what follows, we assume that n → ∞ which is the more relevant case for group

structure detection. In this case, it is possible to obtain simplified estimators for the

asymptotic variance of α̃i. Those estimators will be motivated next.

The main insight is that under n → ∞ the estimation of β∗ has a negligible effect

of the asymptotic variance of α̃i since β∗ is estimated at a faster rate due to borrowing

information across individuals. Further observe that, defining êit = Yit − x⊤
it β̃, we have

α̃i = argmin
α∈R

1

T

T∑
t=1

ρτ (êit − α), i = 1, . . . , n . (22)

Thus α̃i is approximately the sample quantile of {êit, t = 1, . . . , T}, which should be close

to the sample quantile of {eit, t = 1, . . . , T}, where eit := Yit − x⊤
itβ

∗.

If n → ∞ this idea can be formalized by applying a modification of Lemma 7 in

Galvao et al. (2020) (after noting that the proof of the latter result can be modified to

weaken the assumption n(log T )2/T → 0 made in there). Denoting the sample quantile of

{eit, t = 1, . . . , T} by α̂i, the latter result implies

sup
i=1,...,n

|α̂i − α̃i| = OP

(∥∥∥β̃ − β∗
∥∥∥
2
+ T−1 log(n ∨ T )

)
.

Observing that by the proof of Theorem 3.2 in Kato et al. (2012) we have
∥∥∥β̃ − β∗

∥∥∥
2
=

oP(T
−1/2), when n→ ∞ (note that this part of their result does not require the restrictive

growth assumption on n which is needed for unbiased asymptotic normality of β̃), this

implies |α̂i − α̃i| = oP(T
−1/2) uniformly over i and thus the asymptotic distributions of α̂i

and α̃i coincide. Now classical results on the distribution of sample quantiles imply that

the asymptotic variance of α̂i is

Σi = τ(1− τ)/f2ei(qei(τ)) , (23)

where fei , qei denote the (unconditional) density and quantile function of ei1, respectively.

This motivates the following version of Σ̂i,j : for a bandwidth parameter dT define

ˆ̃
ΣiT := τ(1− τ)

(
α̃i(τ + dT )− α̃i(τ − dT )

2dT

)2

, i = 1, . . . , n

and compute

Σ̂i,j := T−1
(
ˆ̃
ΣiT +

ˆ̃
ΣjT

)
. (24)

Theorem 3.7. Let Assumptions 3.6-3.8 with zit = xit hold. Assume log n = o(T ),

min(n, T ) → ∞.
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(i) It holds that

sup
i∈{1,...,n}

|α̃i − α∗
i | = OP

(√
log(n ∨ T )

T

)
.

In particular, Assumption 3.1 holds with an,T =

√
log(n∨T )

T .

(ii) If in addition to the above log(n∨T )/(nd2T ) = o(1), then Assumption 3.2 is also satisfied

with bT := T , Σi,j = Σi +Σj where Σi,Σj are defined in (23), and Σ̂i,j defined in (24).

We next consider the case of temporal dependence. Under Assumptions 3.5–3.10 the

asymptotic variance takes he form

Σi =
1

f2ei(qei(τ))

∑
t∈Z

Cov (1l{ei0 ≤ qei(τ)}, 1l{eit ≤ qei(τ)}).

This can be estimated consistently by

Σ̂iT :=

(
α̃i(τ + dT )− α̃i(τ − dT )

2dT

)2(
τ(1−τ)+

∑
1≤j≤mT

(1−j/T )
∑
t∈Tj

(ŵitŵ
⊤
i,t+j+ŵi,t+jŵ

⊤
it )
)

where Tj := {1 ≤ t ≤ T − j}, mT > 0 denotes the bandwidth parameter tending to be

infinity as T goes to infinity, and

w̃it := τ − 1l
{
Yit ≤ β̃i(τ)

⊤xit + α̂i(τ)
}
.

Theorem 3.8. Let Assumptions 3.6-3.8, and 3.5-3.10 with zit = xit hold. Assume T grows

at most polynomially in n, (log n)3 = o(T ), and min(n, T ) → ∞.

(i) It holds that

sup
i∈{1,...,n}

|α̃i − α∗
i | = OP

(√
log n

T

)
.

where α̃i is defied in (22). In particular, Assumption 3.1 holds with an,T =
√

logn
T .

(ii) If in addition to the above Assumption 3.11 holds, then Assumption 3.2 is also satisfied

with bT := T , Σi,j = Σi +Σj , where Σi,Σj are defined in (23), and Σ̂i,j defined in (24).

4 Numerical experiments

In Section 4.1 and Section 4.2, we report the performance of different algorithms in terms

of assigning individuals to groups when the true number of groups is specified. We consider

two performance metrics: perfect matching, which corresponds to the proportion of times

that the exact group assignment is found, and average matching. The latter is computed

as follows. Define the true cluster assignment as a set ω∗ := {ω∗
1, . . . , ω

∗
n}, where ω∗

i ∈
{1, . . . , G∗} denotes the ω∗

i -th group to which the individual i belongs. Define the set

of permutations of the labels Φ := {ϕ : ϕ is a bijection from {1, . . . , G∗} to {1, . . . , G∗}}.
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Define the estimated membership as a set ω̂ := {ω̂1, . . . , ω̂n}, where ω̂i ∈ {1, . . . , G∗} denotes
the estimated group number of the i-th individual. We define the average percentage of

correct classification of the estimated membership ω̂ as

max
ϕ∈Φ

1

n

n∑
i=1

1l{ϕ
(
ω∗
i

)
= ω̂i} .

A similar approach was taken in Su et al. (2016); Gu and Volgushev (2019); Leng et al.

(2023). The performance of the heuristic (5) for selecting the number of groups is considered

in Section 4.1.2 for logistic regression and in Section 4.3 for quantile regression. Additional

models and simulation settings are discussed in the supplement.

4.1 Logistic regression

In this section, we consider logistic regression with individual-specific intercepts and group-

ings on the slopes specified as

Yit = 1l{αi + x⊤
itβgi ≥ ϵit} ,

where ϵit follows a logistic distribution, αi = 1 for all i and gi ∈ {1, 2, 3} with equal

proportions, and x⊤
it := (x1it, x2it). Moreover,

β1 =

(
−4

1

)
,β2 =

(
0

1

)
,β3 =

(
4

1

)
.

We consider two different data generating processes for the covariates xit. For Model 1,

x1it = 0.5αi + ηi + z1it, and x2it = 0.5αi + ηi + z2it ,

where ηi ∼ N(0, 1) and z1it ∼ N(0, 4) and z2it ∼ N(0, 0.04).

Here, the data generating process is constructed such that the coefficient of x2 is not

informative on the group structure while at the same time it is estimated less precisely.

On the contrary, the coefficient of x1 is informative on group structure and also precisely

estimated.

For model 2, we switch the labels of x1 and x2. This is a more challenging DGP because

the coordinate of β that contains group information is estimated with a lot of noise; see the

scatter plot of {β̂i}i=1,...,n in Figure 1 for a data realization from Model 1 versus Model 2.
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Figure 1: Scatter plots of {β̂i}ni=1 for Model 1 (Figure (a)) and Model 2 (Figure (b)).

4.1.1 Clustering with a known number of groups

We first compare our method with the C-LASSO proposed by Su et al. (2016). The C-

LASSO approach proposed in Su et al. (2016) considers minimizing the following objective:

1

nT

∑
i

∑
t

ψ(Yit,xit,βi, α̂i(βi)) +
λ

n

∑
i

K0∏
k=1

||βi − ηk|| .

This itself is not a convex optimization, but at each k, we can focus on only the k-th

element in the product term in the penalty, resulting in a convex program. For details of

the implementation, we refer to our supplement or Su et al. (2016). In addition, we also

consider an interative k-means approach in the spirit of Bonhomme and Manresa (2015).

In particular, in each iterative step, we re-estimate group membership based on the logit

likelihood function, and then refit the model until coefficients converge. We also compare to
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the Sequential Binary Segmentation Algorithm (SBSA) in Wang and Su (2021) (labeled as

SBSA in Table 1. The SBSA method applies the binary segmentation algorithm to detect

break-points in eigenvectors from the spectral decomposition of the outer product of β̂ that

corresponds to the min(p,G) largest eigenvalues where p is the number of covariates.

Model 1
Perfect Match Average Match

n T S PAM S-Diag S-Iden C-LASSO k-means SBSA S PAM S-Diag S-Iden C-LASSO k-means SBSA

30 60 0.83 0.53 0.88 0.00 0.32 0.67 0.78 0.40 0.03 0.07 0.99 0.92 0.99 0.48 0.95 0.98 0.99 0.96 0.86 0.63
30 90 0.93 0.70 0.99 0.00 0.44 0.80 0.86 0.55 0.05 0.16 1.00 0.96 1.00 0.45 0.97 0.99 0.99 0.98 0.88 0.74
30 150 0.99 0.98 0.99 0.09 0.77 0.93 0.98 0.93 0.04 0.70 1.00 1.00 1.00 0.59 0.99 1.00 1.00 1.00 0.88 0.92
60 60 0.77 0.40 0.82 0.01 0.14 0.47 0.55 0.21 0.00 0.00 1.00 0.91 1.00 0.43 0.95 0.98 0.98 0.97 0.86 0.63
60 90 0.80 0.57 0.88 0.01 0.21 0.57 0.70 0.54 0.00 0.16 1.00 0.96 1.00 0.41 0.96 0.99 0.99 0.99 0.87 0.73
60 150 0.92 0.88 0.96 0.12 0.62 0.88 0.91 0.85 0.00 0.66 1.00 1.00 1.00 0.58 0.99 1.00 1.00 1.00 0.88 0.91

Model 2
Perfect Match Average Match

n T S PAM S-Diag S-Iden C-LASSO k-means SBSA S PAM S-Diag S-Iden C-LASSO k-means SBSA

30 60 0 0 0 0 0 0 0 0 0 0 0.69 0.64 0.68 0.54 0.58 0.73 0.68 0.58 0.70 0.49
30 90 0 0 0 0 0 0 0 0 0 0 0.75 0.68 0.74 0.54 0.63 0.79 0.75 0.63 0.72 0.52
30 150 0.01 0.01 0.02 0 0 0.02 0 0 0 0 0.87 0.76 0.86 0.58 0.73 0.86 0.84 0.73 0.74 0.56
60 60 0 0 0 0 0 0 0 0 0 0 0.70 0.63 0.68 0.48 0.58 0.73 0.66 0.58 0.68 0.47
60 90 0 0 0 0 0 0 0 0 0 0 0.79 0.67 0.77 0.49 0.65 0.80 0.75 0.65 0.72 0.50
60 150 0 0 0 0 0 0 0 0 0 0 0.88 0.73 0.86 0.50 0.75 0.87 0.84 0.75 0.71 0.55

Table 1: Comparison of group membership estimation. S refers to our proposed spectral clustering
method, PAM refers to the PAM method applied on the dissimilarity measure V . S-Diag refers
to the spectral clustering approach but we plug in the diagnonal of the variance-covariance matrix
estimate and likewise, S-Iden is similar but the variance-covariance matrix of individual estimate is
taken to be the identity matrix. For C-LASSO, the four columns of the results are based on tuning
parameter constants c = 0.05 × {1, 14 ,

1
8 ,

1
32}. The k-means approach is adapted from Bonhomme

and Manresa (2015) where we iteratively cluster individuals with a refit to update group coefficients
until convergence. For the iterative k-means method, we use 20 random starting groupings and a
maximum of 100 iterations for each starting grouping. Then we take the grouping that minimizes
the loss function.

The first few rows in Table 1 report the performance of four different grouping methods

for several combinations of n and T based on Model 1. We evaluate the performance by the

proportion of perfect matches out of 100 simulation repetitions and the average matches

described at the beginning of Section 4. The spectral clustering method works consistently

better than the PAM approach (labeled PAM).

From local analysis in Section 2.2, one might expect that PAM and the iterative k-mean

method should perform similarly. However, that analysis is asymptotic and inspecting the

scatter plot of {β̂i}i=1,...,n in Figure 1 suggests that the coefficient estimates are not yet

approximately Gaussian around their true values. Hence the asymptotic analysis may not

provide a sufficiently accurate description of finite sample performance at the sample sizes

considered in this simulation. We also note that there are non-convergence issues with

the iterative k-means method. For n = 30, L = 60, in 12% of the cases none of the

random initialization lead to convergence after 100 iterations and in 35% of all cases the

initialization that led to the best likelihood function did not correspond to convergence

after 100 iterations.

In addition, the non-Gaussian shape of the point clouds may also provide an explanation

for the superior performance of the spectral clustering method over PAM, since spectral
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clustering is known to have an advantage for clusters with non-elliptical shapes.

For small T , using the diagonalized estimated variance-covariance matrix (labeled S-

Diag) actually performs slightly better than using the full estimated variance-covariance

matrix (labeled S). In finite samples, the off-diagonal terms of the variance-covariance

matrix can be poorly estimated and using just the diagonal variance information seems to

provide a small margin of better performance. However, discarding variance information

completely (labeled S-Iden) clearly shows much worse performance. The iterative k-mean

method performs much worse than spectral clustering with variance information in terms

of perfect match. Its average match performance is in fact better than the spectral method

when the variance information is not accounted for. This shows that spectral clustering

needs to be applied together with variance information for good performance. We also

note that the iteration k-means method sometimes does not converge after 100 iterations,

which may explain why performance is not improving monotonically as T increases. The

SBSA approach in Wang and Su (2021) has better performance than the k-mean method

for perfect match proportion in Model 1, but is still inferior to CLASSO, PAM, and spectral

clustering with variance information.

For C-LASSO, the penalty tuning parameter λ is set at cT−1/3Var (Yit) as recommended

by the authors with a few different values of c specified in the caption of Table 1. We see

that the C-LASSO can perform very well for a suitably chosen constant, and our method

matches that or overperforms sometimes. However, it can perform poorly if the tuning

parameter constant is not chosen carefully. This imposes challenges for its practical usage.

Performance for Model 2 is reported in the last few rows in Table 1. We clearly see that

this is a much more challenging DGP with almost all methods failing to recover perfect

match for group membership. In terms of average matches, our method still performs

comparable or sometimes better than all other methods for all combinations of n and T .

4.1.2 Estimating the number of groups

Simulation results in Table 1 assume the researchers know the correct number of groups G.

We report in Table 4.1.2 the performance of the proposed method for estimation of G. The

comparison is made with the information criteria proposed in Su et al. (2016). For Model

1, both methods work very well while for Model 2, the information criteria of Su et al.

(2016) works much better across most combinations of n, T . The information criteria relies

on the whole sample to estimate G while our heuristic approach only requires information

on individual based estimates.

4.1.3 Computation times

In what follows, Table 3 reports the computation times for our method versus C-LASSO,

the iterative k-means method which requires iteration with the whole sample as well as

SBSA proposed in Wang and Su (2021). The run time of SBSA is very similar to our
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Model 1
Heuristic IC-CLASSO

n T 1 2 3 4 ≥5 1 2 3 4 ≥5

30 60 0.10 0 0.89 0 0.01 0 0.02 0.98 0 0
30 90 0 0 0.98 0.01 0.01 0 0 0.99 0.01 0
30 150 0 0 1.00 0 0 0 0 0.94 0.06 0
60 60 0.02 0 0.98 0 0 0 0 1.00 0 0
60 90 0 0 1.00 0 0 0 0 1.00 0 0
60 150 0 0 1.00 0 0 0 0 0.94 0.06 0

Model 2
Heuristic IC-CLASSO

n T 1 2 3 4 ≥5 1 2 3 4 ≥5

30 60 0.93 0.07 0.00 0 0 0 0.85 0.15 0 0
30 90 0.76 0.20 0.04 0 0 0 0.79 0.20 0.01 0
30 150 0.61 0.16 0.22 0.01 0 0 0.52 0.40 0.07 0.01
60 60 0.92 0.08 0.00 0 0 0 0.99 0.01 0 0
60 90 0.87 0.11 0.02 0 0 0 0.92 0.08 0 0
60 150 0.47 0.16 0.36 0.01 0 0 0.62 0.36 0.02 0

Table 2: Estimation of G for Model 1 and Model 2 with true G = 3. IC-CLASSO is based
on a combination of the log-likelihood evaluation and a penalty term that depends on a
turning parameter, group size and n and T .

proposed method because it also only required the use of individual coefficients. For C-

LASSO the reported times are based on maximum 20 iterations for optimization. The

final estimates are obtained when the objective function differs less than 0.001 and when

the ℓ2 norm of the estimates group centers differ by less than 0.1% or when the maximum

iterations are reached. For the iterative k-mean method, we take 20 random start of group

membership and pick the best estimates that minimizes the loss function criteria. For each

random starting, the maximum number of iteration is 100. With known G, our method

and the SBSA method has the least computational time while the iterative k-means has

the largest. This is because quite often the k-mean algorithm does not converge before the

maximum 100 iterations is reached. Our algorithm spends most of its computation time

on individual based estimates. For the C-LASSO method, the individual estimates are

computed as initial estimates before applying a re-optimization with the penalty terms for

group center estimates. Because the optimization problem is only convex for optimizing over

one group center while fixing the others, it has to optimize group by group, which increases

computation times. The iterative k-means method takes the most computation time, as it

requires individual loops to decide group membership until convergence as well as refitting to

obtain group center estimates. In practice, we observe that it may take a very large number

of iterations to converge. When G is not known, the computation time of our method does

29



not increase because the heuristic method recycles already computed similarity measures

to estimate G. The SBSA method uses a IC criteria to estimate G. Because grouping is

obtained very fast for each candidate model and the IC criteria just needs to evaluate the

likelihood of each estimated candidate model, the increase in computation time is also very

minimal. Both the C-LASSO and k-means rely on information criteria to estimate G which

requires fitting of all candidate models with varying G. Hence computation times grow

at least linearly with the number of candidate models. The reported times in Table 3 are

based on candidate models with G = {1, 2, 3, 4, 5}.

Known G Estimate G
n T Spectral C-LASSO Kmeans SBSA Spectral C-LASSO Kmeans SBSA
30 60 0.32 5.88 13.23 0.38 0.32 31.75 86.27 0.44
30 90 0.38 6.55 24.76 0.44 0.38 39.94 122.75 0.50
30 150 0.42 6.87 52.69 0.43 0.43 48.09 245.97 0.52
60 60 1.26 10.15 48.27 0.77 1.28 59.48 445.17 0.94
60 90 1.47 11.10 197.70 0.80 1.52 79.38 742.79 1.12
60 150 1.61 12.30 225.92 0.85 1.61 123.48 801.23 1.34

Table 3: Comparison of computation time in seconds for Model 1: the left panel includes computa-
tion times when we assume G is known. The right panel includes computation times when we have
to estimate G. For our proposed method, we use the heuristic method to estimate G and for all
other methods, we use some form of information criteria to estimate G from the set {1, 2, 3, 4, 5}.
Timings are averages of 5 data realizations.

4.2 Quantile regression

In this section, we consider quantile regression with individual-specific intercepts and group-

ing on the slopes as in Example 2.2, and with joint slope and grouping of intercepts from

Example 2.3. We focus on the clustering performance with a given (correctly specified)

number of groups, the performance of the proposed heuristic, and several other methods

for selecting the number of groups is considered in Section 4.3.

4.2.1 Quantile regression individual–specific intercepts and grouping on slopes

Recall the model specification in Example 2.2: qit(τ) = αi(τ) + x⊤
itβi(τ) = z⊤itγi(τ) . This

setting was also considered in Zhang et al. (2019a) and we will compare the performance

of the proposed method with theirs. Simulations are done in the quantreg package in R.

Covariance estimates are computed using the function summary.rq() with option se="nid"

and default bandwidth choice hs=true.

We consider three models. Model 1 corresponds to Model 3 from Zhang et al. (2019a).

Model 1:

yit = αi + x⊤
itβgi + 0.5x2iteit ,
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where

αi
iid∼ U(0, 1), i = 1, . . . , n, gi are sampled randomly with equal probablities from {1, 2, 3}.

Set

β1 =

(
0.1

0.1

)
,β2 =

(
0.2

0.2

)
,β3 =

(
0.3

0.3

)
,

eit
iid∼ N(0, 1) or eit

iid∼ t(3), and

x⊤
it = (x1it, x2it) , with x1it = 0.3αi + z1it, with z1it

iid∼ N(0, 1), and x2it ∼ U(0, 1).

Results for τ = 0.5 are reported in Table 4. We considered the PAM method as well as

several variants of spectral clustering. In particular, Sg refers to spectral clustering when

we apply the Gaussian kernel instead of the exponential kernel in Algorithm 1. S-Diag is

spectral clustering when we use only the diagonal entries in the variance-covariance matrix

and sets the off–diagonal entries to zero. S-Iden is spectral clustering when we do not

use the variance covariance information of the coefficient estimates. k-mean◦ applies the

k-mean clustering algorithm on β̂ and ZWZ19 is the method in Zhang et al. (2019a) which

adapts the iterative method of Bonhomme and Manresa (2015) to the quantile regression

case.

Spectral clustering shows uniformly best performance in terms of average and perfect

matching across all settings considered. The approach of Zhang et al. (2019a) comes close in

terms of average matching and is better than both methods which ignore variance informa-

tion (S-Iden and k-means◦) but is slightly worse than PAM and the spectral method. This

agrees with the theoretical analysis in Section 2.2 which suggests that for a heteroscedastic

model as in Model 1, the loss function based approach implicitly takes into account vari-

ance information, but is not as efficient as using the dissimilarity measure as in Algorithm

1. Surprisingly, Zhang et al. (2019a) shows much worse performance in terms of perfect

matching. A closer look at the results revealed that in this model the method of Zhang

et al. (2019a) often assigns one individual to the wrong group, resulting in good average

matching but inferior perfect matching performance. Despite our best efforts at varying

various parameters of Zhang et al. (2019a) (e.g. criteria for termination and number of

random starting points), we were not able to alleviate this issue. Among spectral methods,

using the Gaussian kernel to transform the dissimilarity measure does not lead to improve-

ments in terms of performance. Using just the diagonal of the variance-covariance matrix

also yields almost identical performance than using the estimated full variance-covariance

matrix. We do note that the PAM method is slightly worse than the corresponding spec-

tral clustering method. This seems to be a persistent phenomenon we observe in all the

simulations for quantile regression. Moreover, we provide the scatter plot of {β̂i}i=1,...,n in

the online Appendix (Section 8 Figure 5) for a data realization where the proposed method
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achieves perfect matching but all the other methods fail. The figure suggests that there

seems to be clear separation along the first coordinate, but not in the second coordinate

of β̂, which is driven by the fact that the second coordinate is estimated with more noise.

However, this information is not available to the researcher. Accounting for the variance

information improves the performance compared to methods that do not account for this.

The loss function based method of Zhang et al. (2019a) implicitly accounts for this to some

extent, but less well than reweighting.

The simulation findings suggest that the main improvements in our proposal are due

to using variance information, while using spectral clustering instead of PAM only leads

to modest additional gains. The results here are also consistent with the local analysis in

Theorem 2.1 since this is a model with heteroscedastic errors.

The second model we consider has four groups, with pairs of group centres being close

together. Both entries of the coefficient vector carry information about the group structure,

but one of them is estimated more precisely than the other one.

Model 2:

yit = αi + x⊤
itβgi + 0.5x2iteit ,

where

αi = 1, i = 1, . . . , n, gi are sampled randomly with equal probabilities from{1, 2, 3, 4}.

Set

β1 =

(
0.1

0.1

)
,β2 =

(
0.2

0.2

)
,β3 =

(
3

3

)
,β4 =

(
3.1

3.1

)
,

eit
iid∼ N(0, 1) or t(3), and set

x⊤
it = (x1it, x2it) , with x1it = 0.3αi + z1it, where z1it

iid∼ N(0, 1), and x2it ∼ U(0, 1) .

Results for τ = 0.5 are reported in Table 5. The results are fairly similar to those of

Model 1, the proposed method has the best performance with respect to perfect and average

match. The design of this DGP is also used later for estimation of G to demonstrate the

drawback of stability based method proposed in Wang (2010). Again, the main performance

boost comes from using reweighting and using spectral clustering instead of PAM only leads

to small additional accuracy gains.

Model 3: The last model we consider has the same specification as Model 1, except

that we allow individuals to have varying time period lengths and individuals with shorter

panel length are expected to be estimated with larger standard error. This resembles many

macroeconomic settings where individual units have varying panel length and hence individ-

ual based estimates are of very different quality. In the simulation, the panel lengths are a

random draw from {30, 60, 90} with equal probabilities. Results are summarized in Table 6.
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n T
Perfect Match Average Match

Sg S PAM S-Diag S-Iden k-means◦ ZWZ19 Sg S PAM S-Diag S-Iden k-means◦ ZWZ19

N(0, 1), τ = 0.5

30 60 0.23 0.23 0.17 0.22 0 0 0.09 0.95 0.95 0.93 0.95 0.64 0.63 0.90
30 90 0.62 0.62 0.56 0.61 0 0 0.39 0.98 0.98 0.98 0.98 0.70 0.70 0.97
30 120 0.81 0.81 0.77 0.80 0 0 0.67 0.99 0.99 0.99 0.99 0.75 0.75 0.98
60 60 0.06 0.06 0.04 0.05 0 0 0.01 0.95 0.95 0.94 0.95 0.63 0.61 0.92
60 90 0.40 0.40 0.34 0.39 0 0 0.16 0.98 0.98 0.98 0.98 0.70 0.69 0.97
60 120 0.72 0.72 0.65 0.71 0 0 0.45 0.99 1.00 0.99 0.99 0.76 0.76 0.99
90 60 0.02 0.02 0.01 0.02 0 0 0.00 0.96 0.96 0.94 0.95 0.63 0.61 0.92
90 90 0.27 0.26 0.20 0.26 0 0 0.07 0.99 0.99 0.98 0.98 0.70 0.69 0.97
90 120 0.62 0.62 0.57 0.62 0 0 0.34 1.00 1.00 0.99 1.00 0.77 0.76 0.99

t(3), τ = 0.5

30 60 0.12 0.11 0.07 0.10 0 0 0.04 0.92 0.92 0.89 0.92 0.61 0.60 0.86
30 90 0.42 0.42 0.38 0.41 0 0 0.23 0.97 0.97 0.96 0.97 0.67 0.67 0.94
30 120 0.73 0.73 0.69 0.73 0 0 0.51 0.99 0.99 0.99 0.99 0.72 0.72 0.98
60 60 0.01 0.01 0.01 0.01 0 0 0.00 0.93 0.93 0.91 0.93 0.60 0.58 0.88
60 90 0.22 0.23 0.16 0.21 0 0 0.06 0.97 0.97 0.97 0.97 0.67 0.66 0.95
60 120 0.53 0.52 0.45 0.52 0 0 0.26 0.99 0.99 0.99 0.99 0.72 0.72 0.98
90 60 0.00 0.00 0.00 0.00 0 0 0.00 0.94 0.93 0.91 0.93 0.60 0.58 0.89
90 90 0.10 0.09 0.06 0.09 0 0 0.02 0.97 0.97 0.97 0.97 0.66 0.66 0.95
90 120 0.39 0.39 0.34 0.38 0 0 0.13 0.99 0.99 0.99 0.99 0.73 0.72 0.98

Table 4: Membership estimation based on Spectral (the proposed method), ZWZ19 Zhang et al.
(2019a), and the vanilla k−means method without variance information for Model 1 with τ = 0.5
and two error distributions.

The overall performance deteriorates in comparison to Table 4 since some individuals with

shorter panel length are estimated with more noise. The spectral clustering methods (Sg

and S) perform comparably. Using just the diagonal information of the covariance matrix

yields equally good performance, but not using the covariance information at all clearly

performs worse. The vanilla k-means method again performs very similarly to spectral

clustering without accounting for variance information. The method proposed by Zhang

et al. (2019a) is competitive, improves upon estimates not using variance information, but

is slightly inferior to PAM and our proposed spectral clustering methods.

4.2.2 Quantile regression with joint slope and grouping on intercepts

In this section, we consider the setting in Example 2.3. The spectral clustering approach

is based on the estimators for the slopes and variances described in Section 3.2.3. More

precisely, recall the definition of α̃1, β̃ in (21) and Σ̂i,j defined in (24).

The variation matrix V̂ which we use as input to the spectral clustering algorithm

is given by V̂ij := Σ̂
−1/2
i,j |α̃i − α̃j | . For comparison, we also consider spectral clustering

setting all variance estimators set to be equal, the naive k-means approach on estimated

α̃i from (21), and the convex clustering procedure of Gu and Volgushev (2019). Tuning

parameters for Gu and Volgushev (2019) were set as described in the latter paper. The

following model corresponds to DGP1 location scale shift model in Gu and Volgushev
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n T
Perfect Match Average Match

Sg S PAM S-Diag S-Iden k-means◦ ZWZ19 Sg S PAM S-Diag S-Iden k-means◦ ZWZ19

N(0, 1), τ = 0.5

30 60 0.31 0.32 0.26 0.31 0 0 0.06 0.95 0.96 0.94 0.96 0.70 0.69 0.84
30 90 0.67 0.69 0.60 0.67 0 0 0.23 0.98 0.99 0.98 0.98 0.74 0.73 0.88
30 120 0.87 0.88 0.83 0.87 0 0 0.32 0.99 1.00 0.99 1.00 0.79 0.78 0.88
60 60 0.13 0.13 0.07 0.13 0 0 0.01 0.96 0.96 0.95 0.96 0.68 0.67 0.84
60 90 0.49 0.50 0.43 0.50 0 0 0.09 0.99 0.99 0.98 0.99 0.75 0.73 0.86
60 120 0.77 0.78 0.74 0.78 0 0 0.19 1.00 1.00 1.00 1.00 0.81 0.78 0.86
90 60 0.05 0.05 0.03 0.05 0 0 0.00 0.96 0.97 0.96 0.97 0.69 0.68 0.83
90 90 0.38 0.38 0.30 0.36 0 0 0.05 0.99 0.99 0.99 0.99 0.75 0.74 0.84
90 120 0.71 0.71 0.61 0.70 0 0 0.08 1.00 1.00 1.00 1.00 0.81 0.79 0.83

t(3), τ = 0.5

30 60 0.20 0.20 0.14 0.19 0 0 0.02 0.93 0.94 0.91 0.94 0.67 0.66 0.80
30 90 0.51 0.53 0.44 0.52 0 0 0.11 0.97 0.98 0.97 0.98 0.72 0.71 0.84
30 120 0.74 0.76 0.70 0.75 0 0 0.19 0.99 0.99 0.99 0.99 0.76 0.76 0.86
60 60 0.03 0.04 0.02 0.04 0 0 0.00 0.94 0.95 0.93 0.95 0.66 0.66 0.79
60 90 0.30 0.31 0.26 0.30 0 0 0.02 0.98 0.98 0.98 0.98 0.72 0.71 0.82
60 120 0.61 0.62 0.56 0.60 0 0 0.08 0.99 0.99 0.99 0.99 0.77 0.75 0.83
90 60 0.01 0.01 0.00 0.01 0 0 0.00 0.95 0.95 0.93 0.95 0.67 0.66 0.78
90 90 0.18 0.18 0.14 0.18 0 0 0.01 0.98 0.98 0.98 0.98 0.72 0.71 0.80
90 120 0.49 0.50 0.41 0.49 0 0 0.03 0.99 0.99 0.99 0.99 0.78 0.76 0.79

Table 5: Membership estimation based on Spectral (the proposed method), ZWZ19 Zhang et al.
(2019a), and the vanilla k−means method without variance information for Model 2 with τ = 0.5
and two error distributions.

(2019).

Model 4:

yit = αi + xitβ + (1 + xitγ)eit .

where eit
iid∼ N(0, 1) or eit

iid∼ t(3), αi ∈ {1, 2, 3} with the same proportions, and β = 1, γ =

0.1, xit = γi+vit, where γi and vit are independent and identically distributed from standard

normal distribution over i, t, respectively.

Tables 7 summarizes the proportion of perfect classification and the average of the

percentage of correct classification based on the proposed method with both exponential

and the Gaussian kernel (denoted as S and Sg respectively). Spectral clustering ignoring

variance information is denoted as S-Iden, and k-means clustering on α̃i is denoted as k-

means◦ along with the PAM method for clustering. The procedure from Gu and Volgushev

(2019) is denoted as GV.

In this model, including variance information is not helpful (S versus S-Iden). A possible

explanation for variance information not being useful in this model is that the αi are one-

dimensional and there are no directions of larger or smaller variation in their estimates. The

PAM and vanilla k-means performs identical in this model. The key difference is that PAM

picks a representative point as the center of a group while k-means will take a cluster based

average, this does not materialize any differences for grouping estimation in this Model.

The method proposed in Gu and Volgushev (2019), which uses convex clustering method
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n
Perfect Match Average Match

Sg S PAM S-Diag S-Iden k-means◦ ZWZ19 Sg S PAM S-Diag S-Iden k-means◦ ZWZ19

N(0, 1), τ = 0.5

30 0.09 0.10 0.05 0.08 0 0 0.04 0.92 0.93 0.86 0.92 0.61 0.61 0.88
60 0.01 0.02 0.00 0.01 0 0 0.00 0.94 0.94 0.87 0.93 0.59 0.59 0.90
90 0.00 0.00 0.00 0.00 0 0 0.00 0.93 0.93 0.88 0.93 0.59 0.58 0.90

t(3), τ = 0.5

30 0.04 0.04 0.02 0.04 0 0 0.01 0.89 0.90 0.82 0.89 0.58 0.58 0.84
60 0.00 0.00 0.00 0.00 0 0 0.00 0.91 0.91 0.83 0.91 0.57 0.56 0.86
90 0.00 0.00 0.00 0.00 0 0 0.00 0.91 0.91 0.83 0.91 0.56 0.55 0.87

Table 6: Membership estimation based on Spectral (the proposed method), ZWZ19 Zhang et al.
(2019a), and the vanilla k−means method without variance information for Model 3 with τ = 0.5
and two error distributions.

to group the intercept shows slightly inferior performance for smaller T , but is otherwise

comparable for larger T .

n T
Perfect Match Average Match

S Sg S-Iden PAM k-means◦ GV S Sg S-Iden PAM k-means◦ GV

N(0, 1), τ = 0.5

30 15 0.07 0.08 0.06 0.05 0.05 0.03 0.90 0.90 0.89 0.89 0.91 0.67
30 30 0.52 0.53 0.52 0.45 0.49 0.39 0.98 0.98 0.98 0.97 0.98 0.88
30 60 0.94 0.94 0.94 0.91 0.92 0.91 1.00 1.00 1.00 1.00 1.00 0.99
60 15 0.00 0.00 0.01 0.01 0.01 0.00 0.92 0.92 0.91 0.90 0.92 0.66
60 30 0.35 0.36 0.36 0.27 0.34 0.22 0.98 0.98 0.98 0.98 0.98 0.90
60 60 0.91 0.90 0.90 0.87 0.90 0.86 1.00 1.00 1.00 1.00 1.00 0.99
90 15 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.91 0.91 0.90 0.92 0.66
90 30 0.19 0.20 0.20 0.16 0.17 0.12 0.98 0.98 0.98 0.98 0.98 0.91
90 60 0.89 0.88 0.88 0.84 0.87 0.83 1.00 1.00 1.00 1.00 1.00 0.99

t(3), τ = 0.5

30 15 0.01 0.01 0.02 0.01 0.02 0.01 0.88 0.88 0.85 0.86 0.88 0.64
30 30 0.34 0.34 0.34 0.29 0.32 0.23 0.96 0.96 0.96 0.95 0.96 0.84
30 60 0.88 0.88 0.88 0.83 0.85 0.80 1.00 1.00 1.00 0.99 0.99 0.98
60 15 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.88 0.88 0.86 0.88 0.60
60 30 0.16 0.16 0.17 0.13 0.15 0.08 0.97 0.97 0.97 0.96 0.97 0.85
60 60 0.78 0.79 0.78 0.73 0.78 0.71 1.00 1.00 1.00 0.99 1.00 0.98
90 15 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.89 0.89 0.86 0.89 0.55
90 30 0.05 0.06 0.04 0.04 0.05 0.03 0.97 0.97 0.97 0.96 0.97 0.85
90 60 0.69 0.68 0.69 0.63 0.66 0.63 1.00 1.00 1.00 1.00 1.00 0.98

Table 7: Membership estimation based on Spectral, k-means and the method proposed in Gu and
Volgushev (2019) (GV) for Model 4 with τ = 0.5.

4.3 Determining the Number of Groups

In this section, we compare the proposed heuristic in (5) for selecting the number of groups

with other proposals from the literature. A general principle for determining the number of

clusters using cross-validation (CV) in combination with the stability of cluster assignments

was proposed by Wang (2010) and adapted to quantile regression with grouping on the
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slopes in Zhang et al. (2019a). The underlying idea is directly applicable to any clustering

algorithm, and hence we consider two versions: CV-kmeans corresponding to the proposal

of Zhang et al. (2019a), and CV-Spectral which uses spectral clustering as proposed in the

present paper as the underlying clustering algorithm. The maximum numbers of clusters

to consider, denoted by Gmax, is set to 10 throughout. Results for Model 1 are presented

in Table 8 and those for Model 2 are summarized in Table 9. All results reported in this

section are based on 500 simulation repetitions.

For Model 1, the proposed heuristic has the best performance for all settings except

for t(3) errors with n = 30, 60, T = 60 where the CV–Spectral outperforms slightly. CV–

Spectral shows better performance than CV–kmeans consistently. We note that Model 1

is perfectly symmetric with an odd number of groups, this corresponds to a setting that

is favorable for stability–based methods. Model 2 demonstrates a situation where stability

based method performs badly.

Model 2 corresponds to an even number of groups, and both CV methods fail in this

setting because they always pick 2 groups. In light of the findings in Ben-David et al.

(2006), this is not surprising; see also von Luxburg (2010). The issue is that a wrong

grouping with two groups corresponding to coefficients (0.1, 0.1), (0.2, 0.2) in one group

and (3, 3), (3.1, 3.1) in the other is very stable under variations of the data which leads to

confusion of the stability–based methods. In the online appendix, we plot the paths of

cross-validated stability scores for different n, T combinations and different realizations of

the data (Section 8 Figure 6). For larger T there is a local minimum at the true number of

groups G = 4, but the global minima are always at G = 2. The proposed heuristic works

reasonably well and is able to pick up the correct number of groups as T increases.

Model 4 corresponds to common slopes and group structure on the intercept (see also

Example 2.3). Since this setting was also considered in Gu and Volgushev (2019), we con-

sider the information criterion proposed in there. Results are presented in Table 10. We also

include cross–validation with spectral clustering, denoted by CV-spectral, for comparison.

Note that CV–kmeans is not applicable in this setting.

For τ = 0.5, n = 30, T = 15, the best performing method is Gu and Volgushev (2019)

with about a 10% − 15% advantage over the other two methods which show comparable

performance. In all other settings, CV-Spectral is the best or close to best (within 5%)

performer. The heuristic method performs better or is similar to Gu and Volgushev (2019)

for most cases with n = 90, T ≥ 60 while the results between those two are mixed in other

settings.

In conclusion, there is no clear winner that performs best across all models and settings.

This is not surprising because selecting the number of clusters is a very difficult problem in

general. This also explains why there exists no unifying approach for selecting the number

of groups. Our proposed eigenvalue heuristic is competitive in most cases considered, and

clearly the best on some. Stability–based methods have two major limitations: they cannot
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select one group by construction, and they can fail for models with stable clusters for the

wrong number of groups. The information criterion in Gu and Volgushev (2019) can select

one group and performs well when n, T are smaller but falls behind when n is large. No

information criterion is known for quantile regression models with unrestricted intercepts

and grouping on the slopes. Such a criterion could potentially be derived, but it would only

be valid in this specific setting and we refrained from taking this route since we aimed to

propose a method that is applicable in more generality.

n T
N(0, 1) t(3)

1 2 3 4 ≥5 1 2 3 4 ≥5

CV-Spectral, τ = 0.5

30 60 – 0.05 0.84 0.09 0.02 – 0.08 0.72 0.15 0.05
30 90 – 0.01 0.98 0.01 0.00 – 0.03 0.91 0.06 0.00
30 120 – 0.01 0.99 0.00 0.00 – 0.01 0.98 0.01 0.00
60 60 – 0.01 0.98 0.01 0.00 – 0.01 0.95 0.02 0.02
60 90 – 0.00 1.00 0.00 0.00 – 0.00 0.99 0.01 0.00
60 120 – 0.00 1.00 0.00 0.00 – 0.00 1.00 0.00 0.00

CV-kmeans, τ = 0.5

30 60 – 0.29 0.40 0.17 0.14 – 0.34 0.32 0.17 0.17
30 90 – 0.13 0.69 0.12 0.06 – 0.19 0.58 0.16 0.07
30 120 – 0.13 0.80 0.06 0.01 – 0.13 0.72 0.11 0.04
60 60 – 0.09 0.39 0.25 0.27 – 0.13 0.27 0.16 0.44
60 90 – 0.06 0.74 0.15 0.05 – 0.07 0.63 0.18 0.12
60 120 – 0.05 0.85 0.08 0.02 – 0.03 0.78 0.15 0.04

Heuristic, τ = 0.5

30 60 0.00 0.07 0.91 0.02 0.00 0.05 0.25 0.69 0.01 0.00
30 90 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.98 0.02 0.00
30 120 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.99 0.01 0.00
60 60 0.01 0.00 0.98 0.01 0.00 0.09 0.07 0.84 0.00 0.00
60 90 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
60 120 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

Table 8: Percentage of estimated number of groups based on CV-Spectral, CV-kmeans, and Heuris-
tic for Model 1 with τ = 0.5. The true G is 3 (highlighted column).

5 Empirical Applications

5.1 Heterogeneity in environmental Kuznet curves

We first apply our methodology to a panel data quantile regression analysis on the en-

vironmental Kuznet curves (EKC). The concept first emerged in the influential study of

Grossman and Krueger (1991). Various empirical studies have since then provided evi-

dence in different countries that there exists an inverse-U relationship between economic

development and the pollution level. As income per capita increases, we expect to see

first deterioration of the environment, and then an improvement as income continues to

rise. Understanding the relationship between pollution and per capita income is important

for the design of the optimal environmental policy. Here we focus our analysis on using
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n T
N(0, 1) t(3)

1 2 3 4 ≥5 1 2 3 4 ≥5

CV-Spectral, τ = 0.5

40 40 – 1.00 0.00 0.00 0.00 – 1.00 0.00 0.00 0.00
40 80 – 1.00 0.00 0.00 0.00 – 1.00 0.00 0.00 0.00
40 160 – 1.00 0.00 0.00 0.00 – 1.00 0.00 0.00 0.00
60 40 – 1.00 0.00 0.00 0.00 – 1.00 0.00 0.00 0.00
60 80 – 1.00 0.00 0.00 0.00 – 1.00 0.00 0.00 0.00
60 160 – 1.00 0.00 0.00 0.00 – 1.00 0.00 0.00 0.00

CV-kmeans, τ = 0.5

40 40 – 1.00 0.00 0.00 0.00 – 1.00 0.00 0.00 0.00
40 80 – 1.00 0.00 0.00 0.00 – 1.00 0.00 0.00 0.00
40 160 – 1.00 0.00 0.00 0.00 – 1.00 0.00 0.00 0.00
60 40 – 1.00 0.00 0.00 0.00 – 1.00 0.00 0.00 0.00
60 80 – 1.00 0.00 0.00 0.00 – 1.00 0.00 0.00 0.00
60 160 – 1.00 0.00 0.00 0.00 – 1.00 0.00 0.00 0.00

Heuristic, τ = 0.5

40 40 0.00 0.70 0.00 0.30 0.00 0.00 0.92 0.00 0.08 0.00
40 80 0.00 0.00 0.00 0.99 0.01 0.00 0.02 0.00 0.97 0.01
40 160 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.00 1.00 0.00
60 40 0.00 0.49 0.00 0.51 0.00 0.00 0.91 0.00 0.09 0.00
60 80 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.00 0.99 0.00
60 160 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00

Table 9: Percentage of estimated number of groups with CV-Spectral, CV-kmeans and Heuristic
methods for Model 2 with τ = 0.5.. The true G is 4 (highlighted column).

state-level panel data in the United States during the period of 1929 - 1994 and for brevity,

we focus on the emission of SO2. The dataset is available from the National Air Pollutant

Emission Trends, 1900 - 1994, published by the US Environmental Protection Agency. Most

early empirical work on EKC uses least squares methods pooling all the states together and

utilizes either a quadratic or cubic specification to estimate the relationship between the

emission level and per capita income. Millimet et al. (2003) discusses in detail some of

the model specification issues and explores semi–parametric methods that provide a set

of more flexible modelling tools. Given concerns that different states may take a different

environmental transition path as income level arises, List and Gallet (1999) estimates the

EKC with both the quadratic and cubic specification state by state to account for potential

state heterogeneity. They then group these states into three groups depending on whether

the estimated peak of the state-specific EKC falls below, inside or above the 95% confidence

interval implied by a pooled model. This provides an interesting piece of evidence for some

form of group heterogeneity, yet how group membership is constructed is ad hoc and does

not account for the statistical uncertainty of the state-specific least square estimates. On

the other hand, Flores et al. (2014) has criticized the least square approach and advocates

the use of quantile regression methods. They document that quantile regression offers a

more complete picture of the relationship between pollution and income. However, for a

given quantile, they estimate the panel data quantile regression with state fixed effect with-
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n T
N(0, 1) t(3)

1 2 3 4 ≥5 1 2 3 4 ≥5

CV-Spectral, τ = 0.5

30 15 – 0.35 0.43 0.09 0.13 – 0.45 0.31 0.09 0.15
30 30 – 0.04 0.92 0.03 0.01 – 0.11 0.79 0.07 0.03
30 60 – 0.00 1.00 0.00 0.00 – 0.01 0.99 0.00 0.00
60 15 – 0.13 0.63 0.02 0.22 – 0.20 0.44 0.01 0.35
60 30 – 0.00 1.00 0.00 0.00 – 0.01 0.97 0.01 0.01
60 60 – 0.00 1.00 0.00 0.00 – 0.00 1.00 0.00 0.00
90 15 – 0.09 0.79 0.00 0.12 – 0.18 0.61 0.01 0.20
90 30 – 0.00 1.00 0.00 0.00 – 0.00 1.00 0.00 0.00
90 60 – 0.00 1.00 0.00 0.00 – 0.00 1.00 0.00 0.00

Heuristic, τ = 0.5

30 15 0.05 0.40 0.45 0.06 0.04 0.10 0.49 0.31 0.06 0.04
30 30 0.01 0.04 0.92 0.02 0.01 0.00 0.15 0.79 0.03 0.03
30 60 0.00 0.00 0.99 0.00 0.01 0.00 0.00 1.00 0.00 0.00
60 15 0.18 0.37 0.44 0.00 0.01 0.50 0.28 0.22 0.00 0.00
60 30 0.00 0.01 0.99 0.00 0.00 0.00 0.04 0.95 0.00 0.01
60 60 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
90 15 0.02 0.31 0.64 0.01 0.02 0.12 0.40 0.46 0.00 0.02
90 30 0.00 0.00 1.00 0.00 0.00 0.00 0.02 0.98 0.00 0.00
90 60 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

GV, τ = 0.5

30 15 0.00 0.06 0.51 0.34 0.09 0.00 0.16 0.50 0.27 0.08
30 30 0.00 0.00 0.81 0.16 0.03 0.00 0.01 0.76 0.20 0.04
30 60 0.00 0.00 0.98 0.02 0.00 0.00 0.00 0.96 0.03 0.00
60 15 0.00 0.04 0.52 0.32 0.12 0.00 0.11 0.44 0.33 0.12
60 30 0.00 0.00 0.86 0.13 0.02 0.00 0.00 0.78 0.18 0.04
60 60 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.98 0.02 0.00
90 15 0.00 0.03 0.51 0.32 0.14 0.00 0.11 0.37 0.33 0.19
90 30 0.00 0.00 0.88 0.11 0.01 0.00 0.00 0.79 0.17 0.03
90 60 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.98 0.02 0.00

Table 10: Percentage of estimated number of groups based on CV-Spectral, Heuristic, and Gu and
Volgushev (2019) (GV) methods for Model 3 with τ = 0.5. . The true G is 3 (highlighted column).

out allowing the EKC coefficients to be state-dependent. Combining the insights of List and

Gallet (1999) and Flores et al. (2014), we apply our methodology in a panel data quantile

regression model which allows individual fixed effects while estimating the group structure

of the slope coefficients that determine the shape of the EKC curves across different states.

For a given quantile level τ , our model specification is:

qi,τ (Zit) = αi(τ) + λt(τ) + Zitβ1,gi(τ) + Z2
itβ2,gi(τ) ,

where i corresponds to states, t it the time index and gi records the group membership.

We denote by qi,τ (Zit) the conditional quantile function of Yit given Zit where the response

Yit is the state-year per capita emission level of SO2 and Zit is the per capita real income

using 1987 dollar. We focus on the quadratic specification for better visualization of the

estimation results. Cubic specification leads to similar grouping results. Other control
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variables can be added, for example, population density and the number of days with

extreme temperature as considered in Flores et al. (2014). However, Flores et al. (2014)

report that these additional control variables do not change the estimates for the quadratics

of the EKC. We first obtain state-specific estimates β̂1,i(τ), β̂2,i(τ) as well as their associated

covariance matrix.
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Figure 2: Raw state specific estimates for β̂1,i(τ), β̂2,i(τ)) and grouping of states for quantile levels
τ = {0.25, 0.5, 0.75}. Each symbol represents a different group.

To estimate the number of groups for different quantile levels τ = {0.25, 0.5, 0.75}, we
apply the heuristic in (5); see Figure 7 in the online supplement for corresponding plots.

For both 25 and 50th quantile, we find three groups and for 75th quantile, we find 5 groups.

Given these estimates, we then apply the spectral clustering method on these raw estimates,

accounting for the statistical uncertainty. Figure 2 shows the estimated group membership

for (β̂1,i(τ), β̂2,i(τ)). Noticeably, for both 25th and 50th quantile, the grouping of the states

are the same. The red cross in Figure 2 corresponds to West Virginia, while the blue

triangles correspond to Arizona, Montana, Nevada, and Utah. A close inspection of the

data suggests that the EKC for West Virginia looks to be closer to a linear trend within the

range of years under consideration, while Arizona, Montana, Nevada, and Utah are states

that have relatively higher emission level and a much more positive linear coefficient and a

much negative quadratic coefficient when compared to all other states. Interestingly, these

four states are also noted as the “outlier” states in Flores et al. (2014) which documents

that the residuals of these states are alarmingly high. Since their specification requires the

EKC coefficients to be the same for all states, this provides some evidence that these states

might have a different EKC. This is clearly confirmed by our analysis. For the 75th quantile,

the State of Arizona has a more extreme estimate and now becomes a group by herself, as

well as West Virginia. Two smaller groups consist of North Dakota and Wyoming as one

group and Illinois, Montana, Nevada, New Mexico, and Utah as the other group.

We note that some groups resulting from this empirical analysis are very small. The re-

sults should thus be interpreted with caution since this violates our theoretical assumptions

which require proportional group sizes to be bounded from below.
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5.2 Heterogeneity in intergenerational income mobility

The study on intergenerational income mobility across the United States by Chetty et al.

(2014), Chetty et al. (2018) and Chetty and Hendren (2018) has been influential. Using tax

records on the entire U.S. population, they document how children’s expected incomes con-

ditional on their parents’ incomes differ across different geographical regions in the United

States. Although the raw data used to obtain these estimates are not publicly available,

they publish the region specific estimates at the commuting zone, country or census tract

level, together with their associated standard errors. These estimates are used for policy

purposes to encourage welfare improvements for children resides in the areas that have low

mobility rates as for instance considered in Bergman et al. (2019). The categorization of a

region having low mobility is often solely based on the point estimates without accounting

for the associated statistical uncertainty. Our analysis focuses on the plausible hypothe-

sis that although different geographical locations are likely to have heterogeneous mobility

ratings, they may be divided into a few distinct groups and we let the data determine the

number of groups utilizing both point estimates and their levels of precision. It is worth

noting that, in contrast to most proposals in the existing literature, our method remains

applicable even when raw individual-level data are not available due to privacy or other

concerns and only estimated coefficients and their uncertainty estimates are given.

We focus on the 100 most populous commuting zones. Let the point estimates of the

income mobility to be β̂i and the associated standard error to be Σ̂i. To apply the heuristic

for the estimation of the number of groups, we also know Ti which is the amount of data

that leads to the estimates (β̂i, Σ̂i).
5

We first use our method to select the number of groups. The left plot in Figure 5.2

shows that the number of groups is estimated to be nine and the right plot illustrates

the gap of the adjacent eigen values. We then apply our algorithm to estimate the group

membership, which is illustrated in Figure 5.2. Further details on the grouping of the

hundred most populous commuting zones is provided in Table 11. Fayetteville and Memphis

have the lowest point estimates for their income mobility among all the hundred commutting

zones considered and they are grouped together. There are ten commuting zones grouped

together as the top tier. The grouping provides a parsimonious description of the mobility

heterogeneity. It also suggests that citizens in the commuting zones that belong to the same

group, although having different point estimates, are likely to have similar true mobility

ratings.

5All these information are publicly available from https://opportunityinsights.org/data. Note in this
application, Ti varies across individuals, we take the minimum Ti when constructing the scaled dissimilarity
measure for the estimation of G. Using the average value of Ti leads to similar result.
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Figure 3: The heuristic value for group selection and the associated eigen values for the
100 most populous commuting zones using publicly data in Chetty and Hendren (2018).
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Figure 4: Points in the figure are the sorted point estimates β̂i for the 100 most populous
commuting zones in the United States. The blue bars indicates the confidence set of each
point estimates with ± 2 s.e. The dotted line are the division lines for the 9 groups based
on the estimated group membership.
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Grouped Commuting Zones
1 Boston, Des Moines, Honolulu, Minneapolis, Newark, Toms River, Salt Lake City

San Francisco, San Jose, Scranton
2 Albany, Allentown, Brownsville, Los Angeles, Madison, Manchester, New York

Pittsburgh, Providence, Reading, Santa Barbara, Santa Rosa, Seattle, Spokane
3 Bakersfield, Buffalo, Bridgeport, Canton, Denver, El Paso, Erie

Harrisburg, Houston,Modesto ,Omaha, Portland, Poughkeepsie, Sacramento
San Diego, Springfield, Syracuse, Washington DC

4 Austin, Eugene, Fort Worth, Miami, Oklahoma City, Philadelphia
Rockford, San Antonio, Tulsa, Youngstown

5 Albuquerque, Baton Rouge, Cape Coral, Chicago, Cleveland, Dallas
Fresno, Gary, Grand Rapids , Kansas City ,Las Vegas, Milwaukee, Orlando
Port St. Lucie, Phoenix, Sarasota, South Bend, Toledo, Tucson

6 Baltimore, Cincinnati, Columbus, Dayton, Detroit, Louisville
Nashville, New Orleans, Pensacola, St. Louis, Tampa, Virginia Beach

7 Knoxville, Indianapolis, Lakeland, Little Rock, Mobile, Raleigh, Richmond
8 Atlanta, Birmingham, Charlotte, Columbia, Greensboro, Greenville, Jacksonville
9 Fayetteville, Memphis

Table 11: The 100 most populous commuting zones grouped using our method. First group
are for those with the highest income mobility rating and the last group the lowest.

6 Conclusion

In this paper, we propose a general methodology for studying group heterogeneity of ef-

fects in panel data models. We provide high-level conditions for the proposed method to

achieve correct group identification and verify these conditions for several leading non-linear

models often applied in empirical studies. We demonstrate that incorporating uncertainty

information in individual-level estimates is useful for estimating group patterns. Although

we focus on non-linear models, our methodology is naturally applicable to linear models,

as well to situations where micro-level data is not available and only summary statistics

are accessible to the researcher. We have proposed a method for selecting the number of

groups, but left the theoretical validation of this method open to future research.

There are several important questions that merit further research. Our implementation

of the dissimilarity measure and its theoretical analysis requires independence across in-

dividuals. In many settings, dependence across individuals is present. Properly modeling

such dependence and accounting for it in our approach is an important question.

Another substantial practical and theoretical challenge is dealing with short and highly

unbalanced panels where individual level estimators are of very poor quality. In addition,

as pointed out by the Associate Editor and a referee, there are cases when only some coef-

ficients contain group structure. Using a two step procedure where coefficients containing

group information are determined in a first step and grouping is only performed on those co-

efficients in a second step could lead to improvements in grouping accuracy. Implementing
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such an approach poses substantial theoretical challenges and is worthwhile investigating.

The Associate Editor and referee also suggested In some cases, re-scaling the covariates

first to bring all coefficients on the same scale before clustering could also be advantageous.

This merits further exploration which we leave for future research. Finally, extending our

approach to more complex models with time-varying group heterogeneity is another natural

next step which we plan to address in future research.
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ONLINE SUPPLEMENTARY MATERIAL

In this supplementary material, we provide more simulation details, additional plots as

well as proofs of the main results in Section 3.1 and Section 3.2.

7 Simulation Studies

We provide more details about the simulation studies in Section 4.

7.1 Simulations in Section 4.1

We implement the CLASSO estimator using CVX in Matlab with the mosek solver with

version Mosek 8. The algorithm is initiated with βi being the individual logistic regression

estimates and ηk being the origin for all K0 groups. The algorithm is terminated when

the objective function differs by a quantity less than 0.001 and when the ℓ2 norm of the

estimated group centre ηk changes by less than 0.1%.

7.2 Simulations in Section 4.2.1

Simulations are done in the quantreg package in R. Covariance estimates are computed

using the function summary.rq() with option se="nid" and default bandwidth choice

hs=true.

7.3 Simulations in Section 4.2.2

The bandwidth dT used in (24) is based on the method implemented in the quantreg

package in R (function summary.rq() with se="nid" and default choice hs=true).

7.4 Simulations in Section 4.3

The maximum numbers of clusters to consider Gmax is set to Gmax = 5 for n <= 30 and

Gmax = 10 for n > 30 cases for the CV methods, and we set Gmax = 10 across all settings

for the heuristic method. For the cross-validation method, we use 100 (4:4:2) random splits

of the dataset into training and validation data (see Wang (2010) for details on the meaning

of this splitting).
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8 Plots

8.1 Plots in Section 4.2
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Figure 5: Scatter plots of {β̂i}ni=1 for Model 1 with t(3) error and τ = 0.5.
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8.2 Plots in Section 4.3
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Figure 6: Stability score for Model 3 with t(3) error and τ = 0.5.
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8.3 Plots in Section 5
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Figure 7: The heuristic values and the eigen-value plot for three different quantile levels τ =
{0.25, 0.5, 0.75}.

9 Proofs

9.1 Notation

Let an ≲p bn denotes that there exists a non-random constant C ∈ (0,∞) that is in-

dependent of n, T , such that P(an ≤ Cbn) → 1. For a matrix A ∈ Rn×p, we define

the operator norm of A as the maximum absolute column sum of the matrix |||A|||∞ :=

max1≤i≤n
∑p

j=1 |Aij | , define the Frobenius norm of A as the square root of the sum of the

absolute squares of all elements |||A|||F :=
√∑n

i=1

∑p
j=1 |A2

ij | , and define the spectral norm

of A as its largest singular value |||A|||2 := σmax(A) .

To lighten notation we abbreviate the true number of groups asG instead ofG∗ whenever

there is no risk of confusion.
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9.1.1 Proof of Theorem 2.1

The proof consists of two parts. First, we verify that under the assumptions made the

following expansions and convergences hold. Second, we prove that (25)-(28) imply the

statement of the Theorem.

For any (possibly random) sequence ∆γ,T := (∆α,∆β) = OP(1) we have an expansion

of the form

T∑
t=1

L(xt, Yt;γ
∗ + T−1/2∆γ,T )− L(xt, Yt;γ

∗)

=
1

T 1/2

T∑
t=1

∆⊤
γ,T∇γL(xt, Yt;γ

∗) +
1

2
∆⊤

γ,TA∆γ,T + oP(1). (25)

Moreover,

√
T (γ̂ − γ∗) =

1

T 1/2

T∑
t=1

A−1∇γL(xt, Yt;γ
∗) + oP(1), (26)

1

T 1/2

T∑
t=1

∇γL(xt, Yt;γ
∗)

d→ N(0, B) (27)

for a non-degenerate covariance matrix B. Finally, letting

α̃ := argmin
α

T∑
t=1

L(xt, Yt;α,β
∗ + T−1/2∆β)

we have

α̃− α∗ = OP(T
−1/2). (28)

We now prove that (25)–(28) hold under Assumption 2.1. Consider the class of functions

F :=
{
(x, Y ) 7→ L(x, Y ;γ) : γ ∈ Γ̃

}
where Γ̃ is the original parameter space if Γ is bounded and a ball of Euclidean radius 1

around γ∗ if Γ is unbounded but the objective is convex. In both cases the bracketing

numbers N[ ](ε,F , L2(P)) are at most polynomial in 1/ε (see Example 19.7 in van der Vaart

(2000)). Thus Corollary 19.35 in van der Vaart (2000) implies

sup
γ∈Γ̃

∣∣∣ 1
T

T∑
t=1

L(xt, Yt;γ)−m(γ)
∣∣∣ = OP(T

−1/2).

Since the minimum is by assumption well-separated this implies γ̂−γ∗ = oP(1) in the case
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where Γ̃ = Γ. In the case of convexity we find that

inf
γ:∥γ−γ∗∥=1

∣∣∣ 1
T

T∑
t=1

L(xt, Yt;γ)−
1

T

T∑
t=1

L(xt, Yt;γ
∗)
∣∣∣

≥ inf
γ:∥γ−γ∗∥=1

|m(γ)−m(γ∗)|+OP(T
−1/2)

and hence by convexity of γ 7→ 1
T

∑T
t=1 L(xt, Yt;γ) the minimizer of the latter must lie in

γ : ∥γ − γ∗∥ = 1 with probability tending to one. This reduces the problem to the case of

bounded parameter spaces Γ. In either case we have proved γ̂ − γ∗ = oP(1). Now (26)

follows from Theorem 5.23 in van der Vaart (2000) while the expansion in (25) is established

in the first line of the proof of the latter Theorem. Convergence in (27) follows from the

CLT after observing that under Assumption 2.1(ii) L(xt, Yt;γ
∗) has a finite second moment.

To establish (28), note that the proof of Theorem 5.52 in van der Vaart (2000) yields

the following more general result: assume that we have a sequence of functions mT : Θ → R
and estimated functions m̂T such that for any sufficiently small δ > 0

(a) sup∥θ−θT ∥≤δmT (θ)−mT (θT ) ≤ Cδ2,

(b) E
[
sup∥θ−θT ∥≤δ

√
T |m̂T (θ)− m̂T (θT )−mT (θ) +mT (θT )|

]
≤ Cδ,

(c) m̂T (θ̂) = infθ m̂T (θ) +OP(T
−1).

(d) θ̂ = θT + oP(1).

Then θ̂−θT = OP(T
−1/2). We will apply this withmT (θ) := E[L(x, Y ; θ,β∗+T−1/2∆β)], θT

the well-separated global minimizer of mT (θ) which exists by assumption for T sufficiently

large, and

m̂T (θ) = T−1
T∑
t=1

L(xt, Yt; θ,β
∗ + T−1/2∆β)

Of those conditions, (a) follows by a Taylor expansion noting that the gradient of mT

vanishes at θT and (c) follows by assuming the computed minimizer is sufficiently close to

the global minimizer. Next observe that

sup
∥θ−θT ∥≤δ

√
T |m̂T (θ)− m̂T (θT )−mT (θ) +mT (θT )|

≤ sup
∥θ−θT ∥≤δ

GT (L(·; θ,β∗ + T−1/2∆β)− L(·; θT ,β∗ + T−1/2∆β))

where GT denotes the empirical process corresponding to the observations (xt, Yt)t=1,...,T .

The class of functions

FT :=
{
(x, Y ) 7→ L(x, Y ; θ,β∗ + T−1/2∆β)− L(x, Y ; θT ,β

∗ + T−1/2∆β) : |θ − θT | ≤ δ
}
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has envelope ṁ(·)δ and bracketing numbers satisfying N[ ](ε,FT , L2(P)) ≲ δ
ε (compare Ex-

ample 19.7 in van der Vaart (2000)) and thus by Corollary 19.35 in van der Vaart (2000)

we have

E
[
sup
f∈FT

|GT (f)|
]
≲
∫ ∥ṁ∥P,2δ

0

√
1 + log(δ/ε)dε ≲ δ

where the last equality follows after a change of variables. This implies (b). The statement

in (d) follows by similar arguments as the proof of consistency of γ̂ given earlier since we

assumed that each mT has a unique and well-separated global minimizer. This completes

the proof of (a)–(d) and hence (28).

From now on assume that (25)–(28) hold. We first analyze k̂PAM . Let

Ĝα = T−1/2
T∑
t=1

∇αL(xt, Yt;α,β
∗)
∣∣∣
α=α∗

,

Ĝβ = T−1/2
T∑
t=1

∇βL(xt, Yt;α
∗,β)

∣∣∣
β=β∗

.

By (27) we have

(Ĝα, Ĝ
⊤
β )

⊤ d→ (Gα, G
⊤
β )

⊤ ∼ N(0, B)

and by (26) and (27)

T 1/2(α̂− α∗, (β̂ − β∗)⊤)⊤ = −A−1(Ĝα, Ĝ
⊤
β )

⊤ + oP(1)
d→ −A−1(Gα, G

⊤
β )

⊤. (29)

In what follows, for squared matrices M of dimension p + 1 consider the following block

structures

M =
[ M11 M12

M21 M22

]
with M11 ∈ R. With this notation we find that

√
T (β̂ − β∗)

d→
[
[A−1]21 [A−1]22

]
(Gα, G

⊤
β )

⊤ = [A−1]21Gα + [A−1]22Gβ

= [A−1]22Gβ − 1

A11
[A−1]22A21Gα = [A−1]22

(
Gβ − A21

A11
Gα

)
where we used block matrix inversion combined with the fact that A11 is a scalar. Denoting

by C the covariance matrix of Gβ − A21
A11

Gα, we have

√
T (β̂ − β∗)

d→ N(0, [A−1]22C[A
−1]22).

In this notation, Σβ = [A−1]22C[A
−1]22. Since Σ̂β is a consistent estimator for Σβ by

assumption and since β∗ = β1,β2 = β∗+T−1/2∆ by assumption, we obtain by the definition
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of k̂PAM

P (k̂PAM = 1) → P
(
∥Z +Σ

−1/2
β ∆∥2 > ∥Z∥2

)
.

where Z ∼ N(0, Ip×p) with p denoting he dimension of β. This can be further simplified as

follows

∥Z +Σ
−1/2
β ∆∥2 > ∥Z∥2

⇐⇒ ∥Z +Σ
−1/2
β ∆∥22 > ∥Z∥22

⇐⇒ ∥Z∥22 + ∥Σ−1/2
β ∆∥22 + 2Z⊤Σ

−1/2
β ∆ > ∥Z∥22

⇐⇒ ∥Σ−1/2
β ∆∥22 > −2Z⊤Σ

−1/2
β ∆

⇐⇒ 1

2
∥Σ−1/2

β ∆∥22 > ∥Σ−1/2
β ∆∥2N(0, 1).

Thus

P (k̂PAM = 1) → Φ(∥Σ−1/2
β ∆∥2/2). (30)

Next we derive the corresponding limit for k̂BM . Let

∆̃α :=
√
T (α̃− α∗)

∆∗
α := −Ĝα +A12∆

A11
.

Apply the expansion in (25) with ∆γ = (∆̃α,∆) and with ∆γ = (∆∗
α,∆) and subtract

those expansions to obtain

0 ≥
T∑
t=1

L(xt, Yt; α̃,β
∗ + T−1/2∆)−

T∑
t=1

L(xt, Yt;α
∗ + T−1/2∆∗

α,β
∗ + T−1/2∆)

=∆̃αĜα +∆⊤Ĝβ +
1

2
A11∆̃

2
α +

1

2
∆⊤A22∆+ ∆̃αA12∆

−
{
∆∗

αĜα +∆⊤Ĝβ +
1

2
A11(∆

∗
α)

2 +
1

2
∆⊤A22∆+∆∗

αA12∆
}
+ oP(1)

=
A11

2
(∆∗

α − ∆̃α)
2 + oP(1).

where the inequality in the first line follows because α̃ is defined as minimizer and the last

line is obtained by plugging in the definition of ∆∗
α. This implies ∆∗

α = ∆̃α + oP(1). Next
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observe that

inf
α

T∑
t=1

L(xt, Yt;α,β
∗ + T−1/2∆)−

T∑
t=1

L(xt, Yt;α
∗,β∗)

=
T∑
t=1

L(xt, Yt; α̃,β
∗ + T−1/2∆)−

T∑
t=1

L(xt, Yt;α
∗,β∗)

= ∆̃αĜα +∆⊤Ĝβ +
1

2
(∆̃α,∆

⊤)A(∆̃α,∆
⊤)⊤ + oP(1)

= ∆⊤Ĝβ +
1

2
∆⊤A22∆− 1

2A11
(Ĝα +A12∆)2 + oP(1)

where we used the definition of α̃ and the expansion ∆∗
α = ∆̃α + oP(1) in the last line

and (25) in the second to last line. Similarly, setting ∆ = 0 in the above expansion we find

inf
α

T∑
t=1

L(xt, Yt;α,β
∗)−

T∑
t=1

L(xt, Yt;α
∗,β∗) = − 1

2A11
Ĝ2

α + oP(1).

Subtracting those two expansions and expanding the square in (Ĝα +A12∆)2 we find

k̂BM = 1 ⇐⇒ ∆⊤Ĝβ +
1

2
∆⊤A22∆− ĜαA12∆

A11
− (A12∆)2

2A11
+ oP(1) > 0

⇐⇒ ∆⊤
(
Ĝβ − ĜαA21

A11

)
+

1

2
∆⊤
(
A22 −

A21A12

A11

)
∆+ oP(1) > 0

⇐⇒ ∆⊤
(
Ĝβ − ĜαA21

A11

)
+

1

2
∆⊤
[
[A−1]22

]−1
∆+ oP(1) > 0

where the last line follows by block inversion for matrices since A11 is a scalar. Thus

P (k̂BM = 1) → P
(1
2
∆
[
[A−1]22

]−1
∆ > N(0,∆⊤C∆)

)
= Φ

(∆[[A−1]22

]−1
∆

2(∆⊤C∆)1/2

)
. (31)

To lighten notation, let D :=
[
[A−1]22

]−1
. Note that by the Cauchy-Schwarz inequality

and the definition of Σβ

∆⊤D∆

(∆⊤C∆)1/2
=

∆⊤C1/2C−1/2D∆

(∆⊤C∆)1/2
≤ ∥∆⊤C1/2∥2∥C−1/2D∆∥2

(∆⊤C∆)1/2
= (∆⊤Σ−1

β ∆)1/2.

This inequality is strict unless C1/2∆ is a scalar multiple of C−1/2D∆. Thus

lim
T→∞

P (k̂PAM = 1) ≥ lim
T→∞

P (k̂BM = 1)
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with strict inequality unless C1/2∆ is a scalar multiple of C−1/2D∆.

For a proof that

lim
T→∞

P
(
k̂PAM = 1

)
≥ lim

T→∞
P
(
k̂PAM,KT = 1

)
,

we obtain by similar computations as above that

lim
T→∞

P
(
k̂PAM,KT = 1

)
= Φ

( ∆⊤K⊤K∆

2(∆⊤K⊤KΣβK⊤K∆)1/2

)
= Φ

( ∆K⊤KΣ
1/2
β Σ

−1/2
β ∆

2(∆⊤K⊤KΣβK⊤K∆)1/2

)
≤ Φ

((∆K⊤KΣβK
⊤K∆)1/2(∆Σ−1

β ∆)1/2

2(∆⊤K⊤KΣβK⊤K∆)1/2

)
= Φ

((∆Σ−1
β ∆)1/2

2

)
= lim

T→∞
P
(
k̂PAM = 1

)
.

2

9.2 Proof of the generic spectral clustering results (Theorems 3.1, 3.2)

Since the result is trivial when G∗ = 1, we will without loss of generality assume that

G∗ ≥ 2. We will further write G instead of G∗ since there is no risk of confusion in this

subsection.

To simplify notation, we will without loss of generality assume that the units are ordered

according to their true grouping, i.e. unit 1, ..., |I∗1 | belong to group 1, unit |I∗1 |+ 1, ..., |I∗2 |
belong to group 2, etc. This is to shorten notation only, all arguments will work with more

complex notation if this assumption is dropped.

To proceed to the proof, we first consider the decomposition Â = Âdiag+Âoff-diag, where

Âdiag :=


Â(11) 0 · · · 0

0 Â(22) · · · 0

· · · · · · · · · · · ·
0 0 · · · Â(GG)


and

Âoff-diag :=


0 Â(12) · · · Â(1G)

Â(21) 0 · · · Â(2G)

· · · · · · · · · · · ·
Â(G1) Â(G2) · · · 0

 ,

with Â(ij) ∈ R|I∗i |×|I∗j |, i, j = 1, . . . , G. Define the degree matrix D̂diag corresponding to Âdiag

as

D̂diag := diag
(
(D̂diag)1, . . . , (D̂diag)n

)
,

with the elements (D̂diag)i :=
∑n

j=1(Âdiag)ij .Define the corresponding graph Laplacian L̂diag

as

L̂diag := I − D̂
−1/2
diag ÂdiagD

−1/2
diag .
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The remaining proof proceeds as follows: in step 1, we show that L̂diag has non-negative

eigenvalues and that the eigenvalue zero has multiplicity G. Moreover, the eigenspace

corresponding to that eigenvalue is spanned by the vectors D̂diag1lI∗j ∈ Rn with entries

(1lI∗j )k =

{
1, k ∈ I∗j
0, k /∈ I∗j

, (32)

see Lemma 9.1. In step 2, we bound the distance in operator norm between L̂ and L̂diag

(Lemma 9.2). In step 3, we quantify the gap between the G-th and (G + 1)-th smallest

eigenvalues of L̂diag (Lemma 9.3). In step 4, we use the results from step 2 and step 3 to

show that the matrix Û defined in step 4 of the spectral clustering algorithm is close to a

rotation of the matrix U∈ Rn×G defined via

U :=
(
1lI∗1 , ..., 1lI∗G

)
in Frobenius norm (Lemma 9.4), i.e. the Frobenius norm of the difference between those

matrices converges to zero. This convergence together with a simple analysis of the k-means

algorithm yields our main result in step 5.

Step 1: Eigenstructure of L̂diag.

The following result is essentially a reformulation of Proposition 4 from von Luxburg (2007)

in our setting. The proof follows by exactly the same type of arguments as in the latter

paper, for the sake of completeness and for the reader’s convenience we provide a short

proof in our specific setting.

Lemma 9.1. The multiplicity of the eigenvalue 0 of L̂diag equals G. The eigenspace of the

eigenvalue 0 of L̂diag is spanned by the vectors D̂
1/2
diag1lI∗j where 1lI∗j are defined in (32).

Proof of Lemma 9.1. Begin by observing that L̂diag is block-diagonal with G blocks, say

L̂(11), ..., L̂(GG), of size |I∗1 |× |I∗1 |, ..., |I∗G|× |I∗G|. It thus suffices to show that the eigenvalues

of each block are non-negative and that the multiplicity of the eigenvalue 0 for each block

equals 1. Since all blocks share a similar structure we will focus on the first block. Assume

that v = (v1, . . . , v|I∗1 |)
⊤ is an eigenvector of L̂

(11)
diag with norm 1 corresponding to eigenvalue

58



λ. Then, we have

λ =v⊤L̂
(11)
diagv

=
∑
i∈I1

v2i −
∑
i,j∈I1

vi
Âij√

(D̂diag)i

√
(D̂diag)j

vj

=
1

2

(∑
i∈I1

v2i − 2
∑
i,j∈I1

Âij
vi√

(D̂diag)i

vj√
(D̂diag)j

+
∑
j∈I1

v2j

)

=
1

2

∑
i,j∈I1

Âij

(
vi√

(D̂diag)i

− vj√
(D̂diag)j

)2

≥0 ,

where (D̂diag)i denotes the i-th diagonal elements of D̂diag, and the last line follows since

by construction Âij > 0. The latter also implies that λ = 0 if and only if vi
/√

(D̂diag)i =

vj
/√

(D̂diag)j for all i, j, which is only possible if vi = C
√
(D̂diag)i for a constant C inde-

pendent of i. This completes the proof.

Step 2: Bound on operator norm distance between L̂ and L̂diag.

Now we consider the distance between L̂ and L̂diag in operator norm.

Lemma 9.2. On the event
nA1,max

A0,min mink |I∗k |
≤ 1 it holds that

∣∣∣∣∣∣∣∣∣L̂− L̂diag

∣∣∣∣∣∣∣∣∣
∞

≤ 4
√
2nA1,max

A0,minmink |I∗k |

√
A0,maxmaxk |I∗k |
A0,minmink |I∗k |

.

Proof of Lemma 9.2. The proof follows a similar strategy as in Chung and Radcliffe (2011),

and Lemma 3.1 of van Delft and Dette (2021) but modified to account for the fact that

n can diverge while it is fixed in the latter paper. Decompose the difference L̂ − L̂diag as

follows

L̂− L̂diag

=(D̂−1/2 − D̂
−1/2
diag )ÂD̂−1/2 + D̂

−1/2
diag Â(D̂

−1/2 − D̂
−1/2
diag ) + D̂

−1/2
diag (Â− Âdiag)D̂

−1/2
diag

=(I − D̂
−1/2
diag D̂

1/2)D̂−1/2ÂD̂−1/2 + (D̂
−1/2
diag D̂

1/2)D̂−1/2ÂD̂−1/2(I − D̂1/2D̂
−1/2
diag )

+ D̂
−1/2
diag (Â− Âdiag)D̂

−1/2
diag .

Now, we bound the terms on the right hand side separately. Define the i-th diagonal
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elements of the diagonal matrix D by (D)i. By definition of the norm |||·|||∞, we have

∣∣∣∣∣∣∣∣∣I − D̂
−1/2
diag D̂

1/2
∣∣∣∣∣∣∣∣∣

∞
= max

i

∣∣∣∣∣1−
√

D̂i

(D̂diag)i

∣∣∣∣∣
≤ max

i

∣∣∣∣∣1− D̂i

(D̂diag)i

∣∣∣∣∣
≤

maxi

∣∣∣(D̂diag)i − D̂i

∣∣∣
mini(D̂diag)i

,

where we used the fact that |1− x| = |1−
√
x||1 +

√
x| ≥ |1−

√
x|,∀x > 0. We also have

∣∣∣∣∣∣∣∣∣D̂−1/2
diag D̂

−1/2
∣∣∣∣∣∣∣∣∣

∞
=
∣∣∣∣∣∣∣∣∣I − (I − D̂

−1/2
diag D̂

−1/2)
∣∣∣∣∣∣∣∣∣

∞
≤ 1 +

maxi |(D̂diag)i − D̂i|
mini(D̂diag)i

,

and

∣∣∣∣∣∣∣∣∣D̂−1/2ÂD̂−1/2
∣∣∣∣∣∣∣∣∣

∞
=max

i

{
n∑

j=1

Âij√
D̂i

√
D̂j

}

≤max
i

{
1√
D̂i

1

mink

√
D̂k

n∑
j=1

Âij

}

=
maxi

√
D̂i

minj

√
D̂j

.

Moreover, by the sub-multiplicativity of the norm |||·|||∞, it holds that∣∣∣∣∣∣∣∣∣D̂−1/2
diag (Â− Âdiag)D̂

−1/2
diag

∣∣∣∣∣∣∣∣∣
∞

≤ 1

mini(D̂diag)i

∣∣∣∣∣∣∣∣∣Â− Âdiag

∣∣∣∣∣∣∣∣∣
∞
.

Collecting pieces gives∣∣∣∣∣∣∣∣∣L̂− L̂diag

∣∣∣∣∣∣∣∣∣
∞

≤
maxi |(D̂diag)i − D̂i|

mini(D̂diag)i

maxi
√
D̂i

minj

√
D̂j

(
2 +

maxi |(D̂diag)i − D̂i|
mini(D̂diag)i

)
+

1

mini(D̂diag)i

∣∣∣∣∣∣∣∣∣Âdiag − Â
∣∣∣∣∣∣∣∣∣

∞
.

Define

S0,i :=
∑

j:i,j in same group

Âij ,

S1,i :=
∑

j:i,j in different groups

Âij .
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With this notation we have ∣∣(D̂diag)i − D̂i

∣∣ = S0,i

and

(D̂diag)i = S1,i

as well as D̂i = S0,i + S1,i. Moreover, by definition,∣∣∣∣∣∣∣∣∣Âdiag − Â
∣∣∣∣∣∣∣∣∣

∞
= max

i
S1,i.

Collecting pieces yields

∣∣∣∣∣∣∣∣∣L̂− L̂diag

∣∣∣∣∣∣∣∣∣
∞

≤ maxi S1,i
mini S0,i

(
1 +

√
maxi S0,i + S1,i
mini S0,i + S1,i

(
2 +

maxi S1,i
mini S0,i

))

Recall the definition of A1,max, A0,min. We have

S1,i ≤ nA1,max ,

and

A0,maxmax
k

|I∗k | ≥ S0,i ≥ min
k

|I∗k |A0,min . (33)

This further yields

∣∣∣∣∣∣∣∣∣L̂− L̂diag

∣∣∣∣∣∣∣∣∣
∞

≤ nA1,max

A0,minmink |I∗k |

(
1 +

√
maxk |I∗k |+ nA1,max

A0,minmink |I∗k |

(
2 +

nA1,max

A0,minmink |I∗k |

))
.

Assuming
nA1,max

A0,min mink |I∗k |
≤ 1 and noting

maxk |I∗k |
A0,min mink |I∗k |

≥ 1 this can be further bounded by

∣∣∣∣∣∣∣∣∣L̂− L̂diag

∣∣∣∣∣∣∣∣∣
∞

≤ 4
√
2nA1,max

A0,minmink |I∗k |

√
maxk |I∗k |

A0,minmink |I∗k |
.

This completes the proof.

Step 3: Bounding the G+ 1’st smallest eigenvalue of L̂diag.

Denote the i-th smallest eigenvalue of L̂diag by λi. By Lemma 9.1, we know that λ1 = · · · =
λG = 0. Thus, we need to find a lower bound on the G + 1’st smallest eigenvalue λG+1.

This is done in the following Lemma.

Lemma 9.3. We have

λG+1 ≥
A0,min

8A0,max
.

Proof of Lemma 9.3. Recall the Cheeger constant (see for instance equation (2.2) in Chung

and Graham (1997)) of a undirected graph G = (V,E) (V denotes the set of vertices and
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E denotes the set of edges) with weights wi,j on the vertices (i, j) ∈ E:

H := min
I⊂V

∑
j∈I,k /∈I wj,k

min
{∑

j∈I dj ,
∑

k∈V \I dk
} ,

where

dk :=
∑

(i,j)∈E:i∈I

wi,j .

Then, Theorem 2.2 in Chung and Graham (1997) implies that the eigengap of the nor-

malized graph Laplacian is bounded below by H2/2. To translate this result to our set-

ting consider the fully connected graph with vertices given by V = I∗k and edge weights

wi,j := Âij , i, j ∈ V . Hence, the Cheeger constant corresponding to block L̂(mm) on the

diagonal of L̂diag is defined as

Hm := min
I⊂I∗m

∑
j∈I,i∈I∗m\I Âij

min
{∑

j∈I d̂j(m),
∑

k∈I∗m\I d̂k(m)
} ,

where d̂j(m) :=
∑

i∈Im Âij . Since the non-zero eigenvalues of L̂diag are exactly the eigen-

values of the corresponding block diagonal pieces, it follows that

λG+1 ≥
minm=1,...,GH2

m

2
.

Hence, it suffices to prove that

min
m=1,...,G

Hm ≥ A0,min/2A0,max .

Observe that ∑
j∈I

d̂j(m) ≤ |I||I∗m|A0,max

and ∑
j∈I,i∈I∗m\I

Âij ≥ |I||I∗m\I|A0,min .

Let Ī := I∗m\I. It then holds that

Hm ≥ A0,min

A0,max
min
I⊂I∗m

|I||Ī|
|I∗m|min{|I|, |Ī|}

=
A0,min

A0,max
min
I⊂I∗m

|I| ∨ |Ī|
|I∗m|

≥ A0,min

2A0,max
, m = 1, ..., G .

This completes the proof.

Step 4: Frobenius norm convergence of Û to a transformation of U .
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Lemma 9.4. There exists a orthogonal matrix On,T∈ RG×G such that on the event
nA1,max

A0,min mink |I∗k |
≤

1 we have ∣∣∣∣∣∣∣∣∣Û − UOn,T

∣∣∣∣∣∣∣∣∣2
F
≤

216n2Gmaxk |I∗k |2A2
1,maxA

3
0,max

A5
0,minmink |I∗k |3

.

Proof of Lemma 9.4. In the first step we apply Theorem 2 from Yu et al. (2015). In the

notation of the latter paper let d = G, s = n, r = n − G + 1, Σ̂ = L̂,Σ = L̂diag. Let

Ẑ, Z denote the matrices which contain the eigenvectors corresponding to the G smallest

eigenvalues of L̂diag and L̂, respectively (in the notation of Yu et al. (2015) we have V̂ =

Ẑ, V = Z). Note that by Lemma 9.1 we can choose Z to have columns D̂diag1lI∗j , j = 1, ..., G.

By equation (3) in Theorem 2 from Yu et al. (2015) there exists an orthonormal matrix

Ô ∈ RG×G with ∣∣∣∣∣∣∣∣∣ẐÔ − Z
∣∣∣∣∣∣∣∣∣

F
≤

23/2
√
G
∣∣∣∣∣∣∣∣∣L̂− L̂diag

∣∣∣∣∣∣∣∣∣
∞

λG+1
. (34)

Here we note that for symmetric matrices the operator norm ∥ · ∥op used in Yu et al.

(2015) coincides with our |||·|||2 and the latter satisfies |||A|||2 ≤ |||A|||∞ for symmetric ma-

trices A. Let On,T := Ô⊤ and note that by orthogonality of Ô we have
∣∣∣∣∣∣∣∣∣ẐÔ − Z

∣∣∣∣∣∣∣∣∣
F
=∣∣∣∣∣∣∣∣∣Ẑ − ZOn,T

∣∣∣∣∣∣∣∣∣
F
. In what follows write O for On,T to simplify notation. Note that Ûi,· =

Ẑi,·

∥Ẑi,·∥2

, and (UO)i,· =
(ZO)i,·
∥Zi,·∥2

. Similarly to Lemma 3.2 in van Delft and Dette (2021), it

follows that

∣∣∣∣∣∣∣∣∣Û − UO
∣∣∣∣∣∣∣∣∣2

F
=

n∑
i=1

∥∥∥∥∥ Ẑi,·∥∥∥Ẑi,·

∥∥∥
2

− (ZO)i,·
∥Zi,·∥2

∥∥∥∥∥
2

2

=
n∑

i=1

∥∥∥∥∥ Ẑi,· ∥Zi,·∥2 − Ẑi,·

∥∥∥Ẑi,·

∥∥∥
2
+ Ẑi,·

∥∥∥Ẑi,·

∥∥∥
2
− (ZO)i,·

∥∥∥Ẑi,·

∥∥∥
2∥∥∥Ẑi,·

∥∥∥
2
∥Zi,·∥2

∥∥∥∥∥
2

2

≤ 2
n∑

i=1

∥∥∥∥∥ Ẑi,·( ∥Zi,·∥2 −
∥∥∥Ẑi,·

∥∥∥
2
)∥∥∥Ẑi,·

∥∥∥
2
∥Zi,·∥2

∥∥∥∥∥
2

2

+

∥∥∥∥∥ Ẑi,· − (ZO)i,·
∥Zi,·∥2

∥∥∥∥∥
2

2

= 2
n∑

i=1

( ∥Zi,·∥2 −
∥∥∥Ẑi,·

∥∥∥
2
)2

∥Zi,·∥22
+

∥∥∥Ẑi,· − (ZO)i,·

∥∥∥2
2

∥Zi,·∥22

≤ 4
n∑

i=1

∥∥∥Ẑi,· − (ZO)i,·

∥∥∥2
2

∥Zi,·∥22

≤ 4

mini ∥Zi,·∥22

∣∣∣∣∣∣∣∣∣Ẑ − (ZO)
∣∣∣∣∣∣∣∣∣2

F
.
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Combining this with (34) yields∣∣∣∣∣∣∣∣∣Û − UO
∣∣∣∣∣∣∣∣∣2

F
≤ 32G

(λG+1)2mini ∥Zi,·∥22

∣∣∣∣∣∣∣∣∣L̂− L̂diag

∣∣∣∣∣∣∣∣∣2
∞
. (35)

Recalling the definition of Z, we obtain

∥Zi,·∥22 =
(D̂diag)i∑

j∈I∗k
(D̂diag)j

= 1/|I∗k |, ∀i ∈ I∗k ,

where the last line follows since (D̂diag)i is the same for all i from the same group. This

yields

1/min
i

∥Zi,·∥22 = max
k

|I∗k |

and thus ∣∣∣∣∣∣∣∣∣Û − UO
∣∣∣∣∣∣∣∣∣2

F
≤

32Gmaxk |I∗k |
(λG+1)2

∣∣∣∣∣∣∣∣∣L̂− L̂diag

∣∣∣∣∣∣∣∣∣2
∞
.

Combining this with the bounds in Lemma 9.2 we find

∣∣∣∣∣∣∣∣∣Û − UO
∣∣∣∣∣∣∣∣∣2

F
≤

216n2Gmaxk |I∗k |2A2
1,maxA

3
0,max

A5
0,minmink |I∗k |3

Step 5: Completing the argument

Recall that the last step of the algorithm consists of applying k-means clustering to

the n embedded points Û1,·, . . . , Ûn,·. In other words, this step determines group centers

ĉ1, ..., ĉG through

{ĉ1, . . . , ĉG} ∈ argmin
c1,...,cG∈RG

{
n∑

i=1

min
j∈{1,...,G}

∥∥∥Ûi,· − cj

∥∥∥2
2

}
.

The data points Ûi,· and Ûj,· are grouped together if and only if

argmin
k

∥ĉk − Ûi,·∥2 = argmin
k

∥ĉk − Ûj,·∥2 .

We will prove that as soon as
∣∣∣∣∣∣∣∣∣Û − UOn,T

∣∣∣∣∣∣∣∣∣
F
< 1/2 all individuals are clustered correctly.

Combined with Lemma 9.4 and noting that under the assumptions of the theorem we have
nA1,max

A0,min mink |I∗k |
≤ 1, this will complete the proof. By orthogonality of On,T and the definition

of U we have for i, j in different groups

∥(UOn,T )i,· − (UOn,T )j,·∥2 = ∥Ui,· − Uj,·∥2 =
√
2 .
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Note that by definition of the Frobenius norm

max
i ̸=j

{
∥Ûi,· − (UOn,T )i,·∥2 + ∥Ûj,· − (UOn,T )j,·∥2

}
≤

√
2
∣∣∣∣∣∣∣∣∣Û − UOn,T

∣∣∣∣∣∣∣∣∣
F
< 1/

√
2 .

Combining the above inequality with the reverse triangle inequality we have for i, j in

different groups

min
i,j in different groups

∥Ûi,· − Ûj,·∥2 ≥ ∥Ui,· − Uj,·∥2 −
√
2
∣∣∣∣∣∣∣∣∣Û − UOn,T

∣∣∣∣∣∣∣∣∣
F
> 1/

√
2 .

Similarly, we have

max
i,j in the same group

∥Ûi,· − Ûj,·∥2 ≤
√
2
∣∣∣∣∣∣∣∣∣Û − UOn,T

∣∣∣∣∣∣∣∣∣
F
< 1/

√
2 .

Hence any two points in the same group are closer to each other than to any point outside of

that group. This implies that ĉj are just the group means of group I∗j (modulo permutation

of group labels) and that individuals i, j are grouped together if and only if i, j ∈ I∗k for

some k. This completes step 5 and thus the proof of Theorem 3.1. 2

9.2.1 Proof of Theorem 3.2

Note that G∗ ≤ n,mink |I∗k | ≥ 1,maxk |I∗k | ≤ n. Thus the bound in (6) holds with

probability approaching one if A2
1,maxA

3
0,max/A

5
0,min = oP(n

−5). Now letting η̂max :=

λmax(b
−1/2
T Σ̂

−1/2
i,j ) and η̂min := λmin(b

−1/2
T Σ̂

−1/2
i,j ) we find that under Assumption 3.2 η̂min

is bounded away from zero and η̂max is bounded from above by a fixed constant, both with

probability tending to one. Moreover, by definition of Âij , that A0,max ≤ 1 and

A1,max ≤ exp(−b1/2T η̂min(min
k ̸=ℓ

∥β∗
k − β∗

ℓ ∥2 − 2max
i

∥β̂i − βi∥2))

A0,min ≥ exp(−2b
1/2
T η̂maxmax

i
∥β̂i − βi∥2).

Thus

A2
1,maxA

3
0,max/A

5
0,min ≤ exp

(
− 2b

1/2
T {η̂min∆min − (2η̂min + 5η̂max)an,T }

)
.

The assumption an,T = oP(∆min) ensures that the exponent is bounded from below by a

(positive) constant multiple of ∆minb
1/2
T which grows faster than logn by assumption. This

completes the proof. 2

9.3 Proofs for examples section

Throughout this section, we will use the following empirical process notation: let PT,i

denote the empirical measure of the sample (zit, Yit)t=1,...,T and let Pi denote the measure

corresponding to the distribution of (zi1, Yi1) and let GT,i :=
√
T (PT,i − Pi) denote the
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corresponding empirical process. For a function f : (z, y) 7→ f(z, y) and a signed measure P
let Pf stand for

∫
fdP. For a class of functions G define ∥GT,i∥G := supg∈G |GT,if |. Given

the function f : Rd × R → R, define σq,i(f) := Var
(

1√
q

∑q
i=1 f(zit, Yit)

)
.

9.3.1 Proofs for logistic regression in the independent case (Theorem 3.3)

Throughout this section we will use the following additional notation. Let

f(y;γ, z) = exp
{
yz⊤γ − g(z⊤γ)

}
denote the pmf of y ∈ R conditional on z ∈ Rp+1; here the function g is defined via

g : R → R

z 7→ log(1 + ez) .

We abbreviate the corresponding log-likelihood as ℓ(z, y;γ) := yz⊤γ − g(z⊤γ). Define

Mi,T (γ) :=
1

T

∑
t

[Yitz
⊤
itγ − g(z⊤itγ)]

and

Mi(γ) := E[Mi,T (γ)], i = 1, . . . , n .

Lemma 9.5. Given p ∈ Z+, we have
∫ 1
0

√
1 + log(ϵ−p)dϵ ≤ 1 +

√
2πpe1/p.

Proof of Lemma 9.5. Set t =
√
1 + log(ϵ−p), we then have∫ 1

0

√
1 + log(ϵ−p)dϵ

≤2

p
e

1
p

∫ ∞

1
t2e

−t2

p dt

=− e
1
p

∫ ∞

1
td(e

− t2

p )

=− e
1
p

(
te

− t2

p

∣∣∣∞
1

−
∫ ∞

1
e
− t2

p dt
)

=1 + e
1
p

∫ ∞

1
e
− t2

p dt

≤1 +
√
2πpe1/p .

Proof of Theorem 3.3 (i). Define set Γi(δ) := {γ ∈ Rp+1 : ∥γ − γ∗
i ∥2 ≤ δ}. By the con-

cavity of function Mi,T and definition of γ̂i, when all the directional derivatives on the
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boundary of the set Γi(δ) is negative, that is,

sup
γ:∥γ−γ∗

i ∥2
=δ

(γ − γ∗
i )

⊤∇Mi,T (γ) < 0 ,

it follows that γ̂i ∈ Γi(δ).

This implies

P

(
sup
i

sup

γ:∥γ−γ∗
i ∥2

=C̃
√

logn
T

(γ − γ∗
i )

⊤∇Mi,T (γ) < 0

)
≤ P

(
sup
i

∥γ̂i − γ∗
i ∥2 ≤ C̃

√
log n

T

)
.

Hence it suffices to show that under the stated assumptions it holds that

P

(
sup
i

sup

γ:∥γ−γ∗
i ∥2

=C̃
√

logn
T

(γ − γ∗
i )

⊤∇Mi,T (γ) < 0

)
→ 1 (36)

provided that C̃ is picked sufficiently large. Note that

(γ − γ∗
i )

⊤∇Mi,T (γ) = (γ − γ∗
i )

⊤
(
∇Mi,T (γ)−∇Mi(γ)

)
+ (γ − γ∗

i )
⊤∇Mi(γ) . (37)

We now handle the last two terms on the right hand side of the last equality separately.

More precisely, we will show that for any C̃ > 0 there exists δ > 0 such that for log n/T < δ

we have

sup

γ:∥γ−γ∗
i ∥2

=C̃
√

logn
T

(γ − γ∗
i )

⊤∇Mi(γ) ≤ −C1
log n

T
, i = 1, . . . , n , (38)

where C1 = C̃2κ2 infi{λmin(E
[
zitz

⊤
it

]
)} with κ1 := maxi{∥γ∗

i ∥2} and κ2 :=
eκ(1+κ1)

(1+eκ(1+κ1))2
.

Additionally, we will prove that for C̃ sufficiently large (where “sufficiently large” does

not depend on n, T ), it holds that

P

(
sup
i

sup

γ:∥γ−γ∗
i ∥2

=C̃
√

logn
T

(γ − γ∗
i )

⊤
(
∇Mi,T (γ)−∇Mi(γ)

)
>
C1

2

log n

T

)
→ 0 . (39)

Combining the above statements with the decomposition in (37) yields (36).

Proof of display (38). In what follows assume that the vector γ ∈ Rp+1 satisfies

∥γ − γ∗
i ∥2 = C̃

√
logn
T . Using Taylor expansion, we have

∇Mi(γ) = ∇Mi(γ
∗
i ) +∇2Mi(γ̃)(γ − γ∗

i ) ,

where γ̃ ∈ Rp+1 is on the line connecting γ and γ∗
i . Note that ∇Mi(γ

∗
i ) = 0. Multiplying
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both sides of the equation by (γ − γ∗
i ) gives

(γ − γ∗
i )

⊤∇Mi(γ) = (γ − γ∗
i )

⊤∇2Mi(γ̃)(γ − γ∗
i ) .

Note that ∇2Mi(γ̃) = −E
[
g
′′
(z⊤it γ̃)zitz

⊤
it

]
. It then follows that

(γ − γ∗
i )

⊤∇Mi(γ) =− (γ − γ∗
i )

⊤E
[
g
′′
(z⊤it γ̃)zitz

⊤
it

]
(γ − γ∗

i ) .

This implies

(γ − γ∗
i )

⊤∇Mi(γ) ≤ −∥γ − γ∗
i ∥

2
2 λmin

(
E
[
g
′′
(z⊤it γ̃)zitz

⊤
it

])
. (40)

For any C̃ we have C̃
√

logn
T < 1 provided that log n/T is small enough. Note that γ̃ is in

between γ and γ∗
i and ∥γ − γ∗

i ∥2 = C̃
√

logn
T . We then find ∥γ̃∥2 ≤ 1+ κ1 . Combining this

with Assumption 3.4 yields∥∥∥z⊤it γ̃∥∥∥
2
≤ sup

i,t
∥zit∥2 ∥γ̃∥2 ≤ κ(1 + κ1) .

Note that the function z 7→ g
′′
(z) = ez

(1+ez)2
is positive and decreasing on R+. It then

follows that

g
′′
(z⊤it γ̃) ≥

eκ(1+κ1)

(1 + eκ(1+κ1))2
.

Define κ2 := eκ(1+κ1)

(1+eκ(1+κ1))2
. Plugging the last display into the inequality (40) and using

∥γ − γ∗
i ∥2 = C̃

√
logn
T yields

(γ − γ∗
i )

⊤∇Mi(γ) ≤ −κ2C̃2 log n

T
λmin

(
E
[
zitz

⊤
it

])
.

By Assumption 3.3 that infi{λmin

(
E
[
zitz

⊤
it

])
} is bounded from zero, we obtain (38) by

setting C1 := κ2C̃
2 infi{λmin

(
E
[
zitz

⊤
it

])
}.

Proof of display (39) We will show

P

(
sup
i

sup

γ:∥γ−γ∗
i ∥2

=C̃
√

logn
T

(γ − γ∗
i )

⊤
(
∇Mi,T (γ)−∇Mi(γ)

)
>
C1

2

log n

T

)
→ 0 .

By Cauchy-Schwaz inequality, it holds that

(γ − γ∗
i )

⊤
(
∇Mi,T (γ)−∇Mi(γ)

)
≤ ∥γ − γ∗

i ∥2 ∥∇Mi,T (γ)−∇Mi(γ)∥2 ,
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which implies

P

(
sup
i

sup

γ:∥γ−γ∗
i ∥2

=C̃
√

logn
T

(γ − γ∗
i )

⊤
(
∇Mi,T (γ)−∇Mi(γ)

)
>
C1

2

log n

T

)

≤ P

(
sup
i

sup

γ:∥γ−γ∗
i ∥2

=C̃
√

logn
T

∥γ − γ∗
i ∥2 ∥∇Mi,T (γ)−∇Mi(γ)∥2 >

C1

2

log n

T

)

= P

(
sup
i

sup

γ:∥γ−γ∗
i ∥2

=C̃
√

logn
T

∥∇Mi,T (γ)−∇Mi(γ)∥2 >
C1

2C̃

√
log n

T

)

≤ P

(
sup
i

sup
γ:∥γ−γ∗

i ∥2
≤1

∥γ − γ∗
i ∥2 ∥∇Mi,T (γ)−∇Mi(γ)∥2 > C2

√
log n

T

)
,

where C2 := C1

2C̃
= C̃κ2 infi{λmin(E

[
zitz

⊤
it

]
)}/2. We will show that the last line in the

display above converges to zero provided that C̃ is large enough. Define the vector

Mit(γ) := Yitzit −
zite

z⊤itγ

1 + ez
⊤
itγ

− E

[
Yitzit −

zite
z⊤itγ

1 + ez
⊤
itγ

]
.

Denote the j-th entry of the vector Mit(γ) by Mit,j(γ). We now show that

P

(
sup
i

sup
γ:∥γ−γ∗

i ∥2
≤1

1

T

T∑
t=1

∣∣∣Mit,j(γ)
∣∣∣ > C2

√
log n

T

)
→ 0 ,

Define the function hjγ(z, y) via

hjγ : Rp+1 × {0, 1} → R

(z, y) 7→ hjγ(z, y) := zj

(
y − ez

⊤γ

1 + ez⊤γ

)
1l{∥z∥2 ≤ κ} ,

where zj denotes the j-th element of the vector z. Consider the function class Hi,j(δ) :={
hjγ(z, y) : ∥γ − γ∗

i ∥2 ≤ δ
}
. Set Hi,j := Hi,j(1). It follows that

P

(
sup

γ: ∥γ−γ∗∥2≤1

∣∣∣ 1
T

T∑
t=1

Mit,j(γ)
∣∣∣ > C2

√
log n

T

)
= P

(
||GT,i||Hi,j > C2

√
log n

)
.

Now, we study the probability

P
(
||GT,i||Hi,j > C2

√
log n

)
.
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Note that for any γ ∈ Rp+1 satisfying ∥γ − γ∗
i ∥2 < 1, it holds that∣∣∣∣∣yzj − ez

⊤γzj

1 + ez⊤γ

∣∣∣∣∣ = |zj |

∣∣∣∣∣y − ez
⊤γ

1 + ez⊤γ

∣∣∣∣∣ ≤ ∥z∥2 , (41)

and thus an envelope for the classHi,j is given by κ.Moreover, for any functions hjγ(z, y), h
j
γ̃(z, y) ∈

Hi,j , it holds that ∣∣∣∣∣yzj − ez
⊤γzj

1 + ez⊤γ
− yzj +

ez
⊤γ̃zj

1 + ez⊤γ̃

∣∣∣∣∣ (42)

≤∥z∥2

∣∣∣∣∣ ez
⊤γzj

1 + ez⊤γ
− ez

⊤γ̃zj

1 + ez⊤γ̃

∣∣∣∣∣ (43)

≤∥z∥22 ∥γ − γ̃∥2 , (44)

where the last inequality follows from the mean value theorem and the bound ez/(1+ez)2 ≤
1. Thus, the ϵ-bracketing number of the function class Hi,j satisfies

sup
i,j

N[ ](ϵ,Hi,j , ∥ · ∥2) ≤ C4ϵ
−p−1 (45)

for a constant C4 independent of n. By Theorem 2.14.2 in van der Vaart and Wellner (1996)

and Assumption 3.4, we have

E

[
sup

γ:∥γ−γ∗
i ∥2

<1

(
√
T
∣∣∣ 1
T

T∑
t=1

Mit,j(γ)
∣∣∣)] ≲ 2κJ[ ](1,Hi,j) ,

where

J[ ](1,Hi,j) :=

∫ 1

0

√
1 + logN[ ](ϵ,Hi,j , ∥·∥2)dϵ ≤

∫ 1

0

√
1 + log(C4ϵ−p−1)dϵ <∞

by Lemma 9.5. This implies

µ := sup
i,j

E

[
sup

γ:∥γ−γ∗
i ∥2

<1

(√
T
∣∣∣ 1
T

T∑
t=1

Mit,j(γ)
∣∣∣)] ≤ C5κ (46)

for a constant C5 independent of n. For a function class H define µi(H) := E
[
||GT,i||H

]
,

and σ2i (H) := ||Pi[(h− Pih)
2]||H. By (46) we have µi

(
Hi,j

)
≤ µ. Since the envelope for the

class Hi,j is κ, it holds by Assumption 3.4 that

σ2 := sup
i,j

σ2i
(
Hi,j

)
≤ κ2 .

Define C̃2 := C2C
∗ where C∗ denotes the universal constant C from Theorem 2.14.25 in
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van der Vaart and Wellner (1996). Set t = C2
√
log n − µ to obtain for logn > µ2/C̃2

2 , it

holds that

sup
i,j

P
(
||GT,i||Hi,j > C̃2

√
log n

)
≤ sup

i,j
P
(
||GT,i||Hi,j > C∗{µi

(
Hi,j

)
+ t}

)
.

Invoking Theorem 2.14.25 in van der Vaart and Wellner (1996) yields

sup
i,j

P
(
||GT,i||Hi,j > C∗{µi

(
Hi,j

)
+ t}

)
≤ exp

(
−D

((C2
√
log n− µ)2

σ2

∧ (C2
√
log n− µ)

√
T

κ

))
,

where D is a universal constant independent of n, T, C2. Collecting pieces gives

P

(
sup
i

sup
γ: ∥γ−γ∗∥2≤1

∣∣∣ 1
T

T∑
t=1

Mit,j(γ)
∣∣∣ > C2

√
log n

T

)

≤
n∑

i=1

P

(
sup

γ: ∥γ−γ∗∥2≤1

∣∣ 1
T

T∑
t=1

Mit,j(γ)
∣∣ > C2

√
log n

T

)

≤ exp

(
log n−D

((C2
√
log n− µ)2

σ2

∧ (C2
√
log n− µ)

√
T

κ

))
.

By assumption that log n/T → 0 and n, T → ∞, we can pick a C̃ sufficiently large such

that C2 is large enough to obtain

P

(
sup
i

sup
γ: ∥γ−γ∗∥2≤1

∣∣∣ 1
T

T∑
t=1

Mit,j(γ)
∣∣∣ > C2

√
log n

T

)
→ 0 .

This completes the proof.

Proof of Theorem 3.3 (ii). Define the functions hi : Rp+1 → R(p+1)×(p+1) through

hi(γ) := E

[
ez

⊤
itγ

(1 + ez
⊤
itγ)2

zitz
⊤
it

]
.

Note that

sup
i

∣∣∣∣∣∣∣∣∣Σ̃−1
i − hi(γ̂i)

∣∣∣∣∣∣∣∣∣
2
≤ κ sup

i
λmax(E[zitz⊤it ]) sup

i
∥γ̂i − γ∗

i ∥2 .

By Theorem 3.3 and Assumption 3.3, we obtain

sup
i

∣∣∣∣∣∣∣∣∣Σ̃−1
i − hi(γ̂i)

∣∣∣∣∣∣∣∣∣
2
= OP

(√
log n

T

)
.
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Since

sup
i

∣∣∣∣∣∣∣∣∣∣∣∣ ˆ̃Σ−1

i − Σ̃−1
i

∣∣∣∣∣∣∣∣∣∣∣∣
2

≤ sup
i

∣∣∣∣∣∣∣∣∣∣∣∣ ˆ̃Σ−1

i − hi(γ̂i)

∣∣∣∣∣∣∣∣∣∣∣∣
2

+ sup
i

∣∣∣∣∣∣∣∣∣hi(γ̂i)− Σ̃−1
i

∣∣∣∣∣∣∣∣∣
2
,

it remains to show that

sup
i

∣∣∣∣∣∣∣∣∣∣∣∣ ˆ̃Σ−1

i − hi(γ̂i)

∣∣∣∣∣∣∣∣∣∣∣∣
2

= OP

(√
log n

T

)
. (47)

For ease of notation, we define the matrix Nit(γ) ∈ R(p+1)×(p+1) via

Nit(γ) :=
ez

⊤
itγ

(1 + ez
⊤
itγ)2

zitz
⊤
it − E

[ ez
⊤
itγ

(1 + ez
⊤
itγ)2

zitz
⊤
it

]
.

Define the (j, ℓ)-th entry of matrix Nit(γ) by Nit,j,ℓ(γ). Given δ > 0, it holds that

P

(
sup
i

∣∣∣ 1
T

T∑
t=1

Nit,j,ℓ(γ̂i)
∣∣∣ > C

√
log n

T

)

≤P

(
sup
i

sup
γ:∥γ−γ∗

i ∥2
≤δ

∣∣∣ 1
T

T∑
t=1

Nit,j,ℓ(γ)
∣∣∣ > C

√
log n

T

)
+ P

(
sup
i

∥γ̂i − γ∗
i ∥2 > δ

)
.

By equation (13) of Theorem 3.3, it holds that

P
(
sup
i

∥γ̂i − γ∗
i ∥2 > δ

)
→ 0 .

It remains to bound the probability

P

(
sup
i

sup
γ:∥γ−γ∗

i ∥2
≤δ

∣∣∣ 1
T

T∑
t=1

Nit,j,ℓ(γ)
∣∣∣ > C

√
log n

T

)
.

Define the function hj,ℓγ (z) via

hj,ℓγ : Rp+1 → R

z 7→ hj,ℓγ (z) :=
ez

⊤γ

(1 + ez⊤γ)2
zjzl1l{∥z∥2 ≤ κ} ,

where zj denotes the j-th element of the vector z. Consider the function class Hj,ℓ
i (δ) :={

hj,ℓγ (z) : ∥γ − γ∗
i ∥2 ≤ δ

}
. It follows that

P

(
sup

γ: ∥γ−γ∗∥2≤δ

∣∣∣ 1
T

T∑
t=1

Nit,j,ℓ(γ)
∣∣∣ > C

√
log n

T

)
= P

(
||GT,i||Hj,ℓ

i (δ)
> C

√
log n

)
.

Moreover, by Assumption 3.4, it holds for any function hj,ℓγ (z) ∈ Hj,ℓ
i (δ) that |hj,ℓγ (z)| ≤
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κ2/4. Employing the similar entropy method as in the proof of equation (13) of Theorem 3.3,

we obtain

E sup
γ: ∥γ−γ∗∥2≤δ

(
√
T
∣∣∣ 1
T

T∑
t=1

Nit,j,ℓ(γ)
∣∣∣) ≤ C6κ

2

for a constant C6 independent of n, T . Defining µi(H) := E
[
||GT,i||H

]
, and σ2i (H) :=

||Pi[(h− Pih)
2]||H we have

µ := sup
i
µi

(
Hj,ℓ

i (δ)
)
≤ C6κ

2 ,

σ2 := sup
i
σ2i

(
Hj,ℓ

i (δ)
)
≤ κ4 .

Denote the universal constant C from Theorem 2.14.25 in van der Vaart and Wellner (1996)

by C∗ and set t = C̃
√
log n− µ with C̃ := C/C∗ for log n > µ21/C̃

2 to obtain

P
(
||GT,i||Hj,ℓ

i (δ)
> C

√
log n

)
≤P
(
||GT,i||Hj,ℓ

i (δ)
> C∗{µi

(
Hj,ℓ

i (δ)
)
+ t}

)
.

Invoking Theorem 2.14.25 in van der Vaart and Wellner (1996) yields

P
(
||GT,i||Hj,ℓ

i (δ)
> C∗{µi

(
Hj,ℓ

i (δ)
)
+ t}

)
≤ exp

(
−D

((C̃√log n− µ)2

σ2

∧ (C̃
√
log n− µ)

√
T

κ2

))
,

where D is an universal constant independent of n, T, C. Collecting pieces gives

P

(
sup
i

sup
γ: ∥γ−γ∗∥2≤δ

∣∣∣ 1
T

T∑
t=1

Nit,j,ℓ(γ)
∣∣∣ > C

√
log n

T

)

≤
n∑

i=1

P

(
sup

γ: ∥γ−γ∗∥2≤δ

∣∣∣ 1
T

T∑
t=1

Nit,j,ℓ(γ)
∣∣∣ > C

√
log n

T

)

≤ exp

(
log n−D

((C̃√log n− µ)2

σ2

∧ (C̃
√
log n− µ)

√
T

κ2

))
.

By assumption log n/T → 0, and hence we can pick C sufficiently large to obtain as

min(n, T ) → ∞

P

(
sup
i

sup
γ: ∥γ−γ∗∥2≤δ

∣∣∣ 1
T

T∑
t=1

Nit,j,ℓ(γ)
∣∣∣ > C

√
log n

T

)
→ 0 .

This establishes (47). Note that the eigenvalues of E
[

ez
⊤
itγ

∗
i

(1+ez
⊤
it

γ∗
i )2

zitz
⊤
it

]
are bounded

uniformly away from zero and from above – indeed, boundedness from above follows since

∥zit∥2 ≤ κ by assumption, for boundedness from below recall that z 7→ ez/(1 + ez)2 is
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decreasing and non-negative on R+ so that for κ1 := maxi{∥γ∗
i ∥2} <∞, it holds that

ez
⊤
itγ

∗
i

(1 + ez
⊤
itγ

∗
i )2

≥ eκκ1

(1 + eκκ1)2
> 0 .

A Taylor expansion of the map A 7→ A−1 together completes the proof.
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9.3.2 Proofs for logistic regression under dependence: Theorem 3.4

Proof of Theorem 3.4 (i). The proof of Theorem 3.4 (i) is similar to the proof of Theo-

rem 3.3 (i), the only difference is that we employ Proposition C.2 in Kato et al. (2012)

instead of Talagrand’s inequality for i.i.d. random variables used in the previous proof. We

use the same notation as in the proof of Theorem 3.3 (i). To establish the desired result,

we need to to derive the bounds (38) and (39). Note that the proof of display (38) remains

unchanged under the dependent setting, so we omit the proof for the sake of brevity. We

aim to show the bound (39), i.e.

sup
i

sup

γ:∥γ−γ∗
i ∥2

=C̃
√

logn
T

(γ − γ∗
i )

⊤
(
∇Mi,T (γ)−∇Mi(γ)

)
= OP

( log n
T

)
. (48)

By the proof of Theorem 3.3 (i), it suffices to show that

P

(
sup
i

sup
γ:∥γ−γ∗

i ∥2
≤1

1

T

T∑
t=1

∣∣∣Mit,j(γ)
∣∣∣ > C2

√
log n

T

)
→ 0 ,

where C2 is the constant defined in the proof of Theorem 3.3 (i),

Mit(γ) = Yitzit −
zite

z⊤itγ

1 + ez
⊤
itγ

− E

[
Yitzit −

zite
z⊤itγ

1 + ez
⊤
itγ

]
.

and Mit,j(γ) denotes the j-th entry of the vector Mit(γ). Define the function class

Hi,j :=

{
(z, y) 7→

[(
yz− zez

⊤γ

1 + ez⊤γ

)
j
− E

[(
yz− zez

⊤γ

1 + ez⊤γ

)
j

]]
1l{∥z∥2 ≤ κ} :

y ∈ {0, 1}, z ∈ Rp+1,γ ∈ Rp+1, ∥γ − γ∗
i ∥2 ≤ 1

}
.

It then follows that

P

(
sup

γ: ∥γ−γ∗∥2≤1

∣∣∣ 1
T

T∑
t=1

Mit,j(γ)
∣∣∣ > C2

√
log n

T

)
= P

(
||PT,i − Pi||Hi,j > C2

√
log n

T

)
.

We will show that

||PT,i − Pi||Hi,j = OP

(√
log n

T

)
.

By displays (41) and Assumption 3.4, it holds for any i, j and h ∈ Hi,j that

||h||∞ ≤ U1 , and Var (h) ≤ U2 ,
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with some universal constants U1, U2 > 0. Applying Lemma 4 in Galvao et al. (2020) to

the function h/U2 gives

sup
i,j

sup
h∈Hi,j

sup
1≤q≤T

Var
( 1

q1/2

q∑
t=1

h(zit, Yit)
)
≤ U3 ,

with some positive universal constant U3 <∞.

Note that the envelope for function class Hi,j is 2κ and the upper bound for the ϵ-

bracketing number in (45) holds for any Lp-norm and any probability measure Q. Then, we

obtain the following bounds of the ϵ-covering number for any probability measure Q and

any 0 < ϵ < 1 that

N(Hi,j , L1(Q), ϵ) ≤ N[ ](Hi,j , L1(Q), ϵ/2) ≤ (2A/ϵ)ν ,

with some constants A, ν <∞.

By Proposition C.2 of Kato et al. (2012), it holds for any qn,T ≥ 1 satisfying q2n,T log(qn,T ) =

o(T ), any i, and any sn,T > 0 that

P

(
||Pi,T − Pi||Hi,j ≥ C

(√ log(qn,T )

T
+

√
sn,T
T

+
sn,T qn,T

T

))
≤ 2e−sn,T + 2Tβ(qn,T ) , (49)

where C > 0 is a constant independent of T, n, i, j. Let qn,T := C1(log n + log T ) with

the constant C1 > 1 satisfying bC1
β ≤ e−2. With the assumption that T grows at most

polynomially in n and (log n)3 = o(T ), one can verify that q2n,T log(qn,T ) = o(T ). Let

sn,T := 2 log n, it then holds for large n, T that√
log(qn,T )

T
+

√
sn,T
T

+
sn,T qn,T

T
≲

√
log n

T

and

2e−sn,T + 2Tβ(qn,T ) ≲
1

n2
+

1

n2T
.

Taking the union bound for (49) over i = 1, . . . , n gives the desired result.

Proof of Theorem 3.4 (ii). The proof of supi

∣∣∣∣∣∣∣∣∣B̂−1
iT −B−1

i

∣∣∣∣∣∣∣∣∣
2
= oP(1) is similar to the proof

of Theorem 3.3 (ii), which boils down to show that

P

(
sup
i

sup
γ:∥γ−γ∗

i ∥2
≤δ

∣∣∣ 1
T

T∑
t=1

Nit,j,ℓ(γ)
∣∣∣ > C

√
log n

T

)
→ 0 ,
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where

Nit(γ) :=
ez

⊤
itγ

(1 + ez
⊤
itγ)2

zitz
⊤
it − E

[
ez

⊤
itγ

(1 + ez
⊤
itγ)2

zitz
⊤
it

]
,

and Nit,j,ℓ(γ) denotes the (j, ℓ)-th entry of the matrix Nit(γ). The desired result follows by

an application of the union bound and Proposition C.2 of Kato et al. (2012) with similar

arguments as in the proof of Theorem 3.4 (i) after noting that by Lemma 4 in Galvao et al.

(2020), we have

sup
j,ℓ

sup
i

Var

(
1
√
q

q∑
t=1

Nit,j,ℓ(γ)

)
= O(1) .

Thus, it remains to show that supi

∣∣∣∣∣∣∣∣∣ĤiT −Hi

∣∣∣∣∣∣∣∣∣
2
= oP(1). Similar to the proof of the

convergence of B̂−1
iT , one can verify that supi

∣∣∣∣∣∣∣∣∣ 1T ∑T
t=1 ŵitŵ

⊤
it − E

[
wi1w

⊤
i1

]∣∣∣∣∣∣∣∣∣
2
= oP(1). We

now aim to show that

sup
i

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑

1≤j≤mT

(
1− j

T

)( 1

T

T−j∑
t=1

(
ŵitŵ

⊤
i,t+j + ŵi,t+jŵ

⊤
it

))
−

∞∑
j=1

E
[
wi1w

⊤
i,1+j +wi,1+jw

⊤
i1

]∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

= oP(1) .

To this end, we introduce an intermediate term

ÃiT :=
∑

1≤j≤mT

(
1− j

T

)( 1

T

T−j∑
t=1

(
witw

⊤
i,t+j +wi,t+jw

⊤
it

))
,

and we define

ÂiT :=
∑

1≤j≤mT

(
1− j

T

)( 1

T

T−j∑
t=1

(
ŵitŵ

⊤
i,t+j+ŵi,t+jŵ

⊤
it

))
, Ai :=

∞∑
j=1

E
[
wi1w

⊤
i,1+j+wi,1+jw

⊤
i1

]
.

So, we aim to show that supi

∣∣∣∣∣∣∣∣∣ÂiT −Ai

∣∣∣∣∣∣∣∣∣
2
= oP(1). Consider the decomposition

sup
i

∣∣∣∣∣∣∣∣∣ÂiT −Ai

∣∣∣∣∣∣∣∣∣
2
≤ sup

i

∣∣∣∣∣∣∣∣∣E[ÃiT ]−Ai

∣∣∣∣∣∣∣∣∣
2
+ sup

i

∣∣∣∣∣∣∣∣∣E[ÃiT ]− ÂiT

∣∣∣∣∣∣∣∣∣
2
.

We note that supi

∣∣∣∣∣∣∣∣∣E[ÃiT ]−Ai

∣∣∣∣∣∣∣∣∣
2
= oP(1) follows by similar arguments as the proof

of the last display in the proof of Lemma 12 in Galvao et al. (2020).

It remains to show that supi

∣∣∣∣∣∣∣∣∣E[ÃiT ]− ÂiT

∣∣∣∣∣∣∣∣∣
2
= oP(1).

Invoking the triangle inequality again, we have∣∣∣∣∣∣∣∣∣E[ÃiT ]− ÂiT

∣∣∣∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣∣∣∣ÃiT − E[ÃiT ]

∣∣∣∣∣∣∣∣∣
2
+
∣∣∣∣∣∣∣∣∣ÃiT − ÂiT

∣∣∣∣∣∣∣∣∣
2
.
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To bound supi

∣∣∣∣∣∣∣∣∣ÃiT − E[ÃiT ]
∣∣∣∣∣∣∣∣∣

2
, observe that

∣∣∣∣∣∣∣∣∣ÃiT − E[ÃiT ]
∣∣∣∣∣∣∣∣∣

2
≤ mT max

j=1,...,mT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1T

T−j∑
t=1

witw
⊤
i,t+j +wi,t+jw

⊤
it − E

[
wi1w

⊤
i,1+j +wi,1+jw

⊤
i1

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

.

By similar computations as in the proof of of display (53) in Galvao et al. (2020) one can

show that

sup
j=1,...mT

sup
i=1,...,n

sup
q≥1

sup
k,ℓ

Var
( 1
√
q

q∑
t=1

(witw
⊤
i,t+j +wi,t+jw

⊤
it )k,ℓ

)
= O(mT )

By applying Corollary C.1 in Kato et al. (2012) with q = C log(nmT ), s = C log(nmT ) for

a suitable constant C it follows that

sup
i

∣∣∣∣∣∣∣∣∣ÃiT − E[ÃiT ]
∣∣∣∣∣∣∣∣∣

2
= OP

(
mT

√
mT log(nmT )

T

)
Finally, note that for all t = 1, . . . , T , by a Taylor expansion and Assumption 3.4

∥ŵit − wit∥2 ≤ κ2∥γ̂i − γi∥2.

Thus by elementary computations

max
i

∣∣∣∣∣∣∣∣∣ÃiT − ÂiT

∣∣∣∣∣∣∣∣∣
2
≲ mT max

i
∥γ̂i − γi∥2 = OP

(
mT

√
log n

T

)
= oP(1).

Combining all bounds obtained so far we have

sup
i

∣∣∣∣∣∣∣∣∣ÂiT −Ai

∣∣∣∣∣∣∣∣∣
2
= OP

(
mT

√
log n

T
+mT

√
mT log(nmT )

T

)
+ oP(1) = oP(1)

by the assumptions on mT .
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9.4 Proofs for quantile regression in the independent case (Theorem 3.5

and Theorem 3.7)

Proof of Theorem 3.5(i). Define γn,T,i := γ̂i − γ∗
i . The Theorem 5.1 in Chao et al. (2017)

can be used in our framework by setting n = T,m = p+ 1, ξm = κ, gn = 0, and cn = 0. We

then find

γn,T,i = − 1

T
B−1

i

T∑
t=1

ψi,τ (zit, Yit) + γn,T,i,1 + γn,T,i,2 + γn,T,i,3 , (50)

where Bi := E[fY |z(qi,τ (zi1) | zi1)zi1z⊤i1] and ψi,τ (z, Y ) := z(1l(Y ≤ qi,τ (z)) − τ). Define

γ̃n,T,i := γn,T,i,1 + γn,T,i,2 + γn,T,i,3. We now prove that

sup
i

∥γ̃n,T,i∥2 = oP

(√
log n

T

)
. (51)

For this, we show that

sup
i

∥γn,T,i,k∥2 = oP

(√
log n

T

)
, k = 1, 2, 3 .

Now, we handle the three remainder terms γn,T,i,1,γn,T,i,2,γn,T,i,3 separately. By equation

(5.1) in Theorem 5.1 of Chao et al. (2017), we have almost surely

sup
i

∥γn,T,i,1∥2 ≤ C/T

for a constant C independent of n, T, i. Since 1/T = o(
√

log n/T ) it follows that

sup
i

∥γn,T,i,1∥2 = oP

(√
log n

T

)
. (52)

By equation (5.2) in Theorem 5.1 of Chao et al. (2017) applied with κn = 2 log n≪ T , there

exists a constant C1 independent of n, T (and bounded uniformly in i as seen by a close

inspection of the corresponding proof in Chao et al. (2017)) such that for all sufficiently

large T

P

(
∥γn,T,i,2∥2 > C1

(√ log T

T
+

√
2 log n

T

)2)
≤ 2 exp(−κn) = 2/n2 . (53)

Since (√
log T

T
+

√
2 log n

T

)2

≤ 2
2 log n+ log T

T
= o

(√
log n

T

)
,
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an application of the union bound shows that

sup
i

∥γn,T,i,2∥2 = oP

(√
log n

T

)
.

Next apply (5.2) in Theorem 5.1 from Chao et al. (2017) with κn = 2 log n ≪ T to obtain

the existence of a constant C2 independent of T (and bounded uniformly in i as seen by a

close inspection of the corresponding proof in Chao et al. (2017)) such that for all sufficiently

large T

P

(
∥γn,T,i,3∥2 > C2

(√ log T

T
+

√
2 log n

T

)3/2)
< 2/n2 . (54)

Note that (√
log T

T
+

√
2 log n

T

)3

≤ 8
(2 log n)3/2 + (log T )3/2

T 3/2
= o

(
log n

T

)

by the assumption that log n = o(T ). Combining this with the union bound and (54) shows

that

sup
i

∥γn,T,i,3∥2 = oP

(√ log n

T

)
,

and collecting pieces yields (51).

To complete the proof, define the classes of functions

Gi :=
{
(z, y) 7→ a⊤z(1l{y ≤ z⊤b} − τ)1l{∥z∥2 ≤ κ} : b ∈ Rp+1,a ∈ Rp+1, ∥a∥2 = 1

}
and note that

sup
i

∥∥∥∥∥ 1T B−1
i

T∑
t=1

ψi,τ (zit, Yit)

∥∥∥∥∥
2

≤ sup
i

∣∣∣∣∣∣B−1
i

∣∣∣∣∣∣
2
sup
i

∥PT,i − Pi∥Gi (55)

for Pi denoting the measure of and PT,i corresponding to the empirical measure of {(zit, Yit), t =
1, . . . , T}. Under the assumptions made we have supi

∣∣∣∣∣∣B−1
i

∣∣∣∣∣∣
2
= O(1), and Lemma C.3

from Chao et al. (2017) applied with κn = 2 log n ≪ T shows that there exists a constant

C3, independent of n, T (and bounded uniformly in i as revealed by a close look at the

corresponding proof) such that

P

(
||PT,i − Pi||Gi > C3

√
log n

T

)
≤ n−2 .

Applying the union bound shows that

sup
i
||PT,i − Pi||Gi = OP

(√
log n

T

)
.

80



Combining this with (51) completes the proof.

Next we proceed to the proof of Theorem 3.5(ii). The proof will make use of the

following additional notation

ψi,τ (z, Y ) = z(1l(Y ≤ qi,τ (z))− τ)

fit :=
2dT

qi,τ+dT (zit)− qi,τ−dT (zit)

eit := 1/fit

BiT =
1

T

T∑
t=1

fitzitz
⊤
it

Σ̃−1
iT = E[BiT ]H

−1
i E[BiT ] .

We begin by stating and proving an intermediate technical result.

Lemma 9.6. Let Assumptions 3.6-3.9 hold and assume log n = o(T ), lognTdT
= o(1). Let

êit := f̂−1
it , then supi,t |êit − eit| = OP(bn,T ) with bn,T =

√
logn
Td2T

.

Proof of Lemma 9.6. The proof essentially follows from the arguments in the proof of

Lemma 9 of Galvao et al. (2020), but modifications are needed to take into account that

n(log T )2/T = o(1) made in that paper is replaced by log n = o(T ) and that the rate

changes accordingly. By definitions of êis and eis, it holds that

êis − eis = z⊤is

((
γ̂i(τ + dT )− γ∗

i (τ + dT )
)
−
(
γ̂i(τ − dT )− γ∗

i (τ − dT )
))
/2dT .

We know from the display (50) and Theorem 3.5 that

z⊤is(γ̂i(τ ± dT )− γ∗
i (τ ± dT ))

= − 1

T
z⊤isB

−1
i

T∑
t=1

zit

(
1l{Yit ≤ qi,τ±dT (zit)} − (τ ± dT )

)
+OP

(√
log n

T

)
.

Hence with Uit := FY |z(Yit|zit) ∼ U [0, 1] independent of zit, it holds that

êis−eis = − 1

2TdT
z⊤isB

−1
i

T∑
t=1

zit

(
1l{Uit ≤ τ+dT }−1l{Uit ≤ τ−dT }−2dT

)
+OP

(
1

dT

√
log n

T

)
.

(56)

Define the vectors Mit ∈ Rp+1 via

Mit := zit

(
1l{Uit ≤ τ + dT } − 1l{Uit ≤ τ − dT } − 2dT

)/
2dT .
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Fix an arbitrary k ∈ {1, ..., p + 1} and let Mit,k denote the k-th entry of the vector Mit.

It then follows that E[Mit,k] = 0 and supiVar [Mit,k] ≤ C1
dT

for some constant C1 under

Assumption 3.6. Under Assumption 3.6, we also have supi,t,k |Mit,k| ≤ C2/dT for some

constant C2 > 0. Invoking the Bernstein inequality yields

P

(∣∣∣ T∑
t=1

Mit,k

∣∣∣ > Tϵ

)
≤2 exp

(
−

1
2T

2ϵ2∑T
t=1 E[M2

it,k] +
1
3C2d

−1
T Tϵ

)

=2 exp

(
−

1
2T

2ϵ2

C1Td
−1
T + 1

3C2d
−1
T Tϵ

)
.

Take ϵ = C3T
−1/2d

−1/2
T (log n)1/2 for a constant C3 which will be determined later. Under

the assumption logn
TdT

→ 0, it follows that ϵ → 0 and the right hand side of the inequality

becomes

2 exp

(
− 1

2

(C3)
2d−1

T log n

C1d
−1
T + 1

3C2C3d
−1
T T−1/2d

−1/2
T (log n)1/2

)
≤ 2 exp

(
− 1

4
(C3)

2 log n/C1

)
,

where the last inequality holds for log n/(TdT ) sufficiently small. Then, we have

P

(
sup
k

sup
i

∣∣∣ 1
T

T∑
t=1

Mit,k

∣∣∣ > ϵ

)
≤
∑
k

∑
i

P

(∣∣∣ 1
T

T∑
t=1

Mit,k

∣∣∣ > ϵ

)

≤ 2np exp

(
− (C3)

2

4C1
log n

)
→ 0

by taking (C3)
2 > 4C1. Hence, we obtain

sup
i

∥∥∥∥∥ 1T
T∑
t=1

Mit

∥∥∥∥∥
2

= OP

(√
log n

TdT

)
.

Combining this with (56), the fact that supi
∣∣∣∣∣∣B−1

i

∣∣∣∣∣∣
2
= O(1), and Assumption 3.9 gives

sup
i,s

|êis − eis| = OP

(√
log n

TdT
+

√
log n

Td2T

)
= OP

(√
log n

Td2T

)

as desired.

Proof of Theorem 3.5(ii). The following bound follows by the same arguments as Lemma

8 of Galvao et al. (2020) (note that the condition n(log T )2/T = o(1) made in that paper

is not used in their proof of Lemma 8):

sup
i

|||E[BiT ]−Bi|||2 = o(1) . (57)
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In addition, we will prove the following bounds

sup
i

∣∣∣∣∣∣∣∣∣B̂iT −BiT

∣∣∣∣∣∣∣∣∣
2
= OP(bn,T ) (58)

with bn,T =
√

logn
Td2T

,

sup
i

|||BiT − E[BiT ]|||2 = OP

(√
log n

T

)
, (59)

and

sup
i

∣∣∣∣∣∣∣∣∣Ĥ−1
iT −H−1

i

∣∣∣∣∣∣∣∣∣
2
= OP

(√
log n

T

)
. (60)

The remaining proof follows from similar arguments as the proof of Lemma 10 of Galvao

et al. (2020), but modifications are needed to take into account that n(log T )2/T = o(1)

made in that paper is replaced by log n = o(T ) and that the rate changes accordingly. We

note that

B̂iT −BiT =
1

T

T∑
t=1

(f̂it − fit)zitz
⊤
it .

Using Taylor expansion, we have

f̂it − fit = ê−1
it − e−1

it =
eit − êit
e2it

+O
(
|êit − eit|2

)
, (61)

where the remainder term is uniform in i, t since under Assumption 3.7, it holds that

inf
i,t
ei,t = inf

i,t

qi,τ+dT (zit)− qi,τ−dT (zit)

2dT
≥ inf

i,t
inf

|η−τ |≤dT

1

fY |z(qi,η(zit) | zit)

=
1

supi,t supη,z fY |z(qi,η(zit) | zit)
≥ 1/fmax , (62)

almost surely. By Assumption 3.6 and Lemma 9.6, the bound in (58) follows.

Next we prove (59). Define the matrix Nit ∈ R(p+1)×(p+1) via

Nit := fitzitz
⊤
it − E[fitzitz⊤it ] .

It then follows that E[Nit] = 0.We denote by Nit,j,ℓ the (j, ℓ)-th entry of the matrix Nit. By

Assumption 3.6 and the inequality (62), we have supi,t,j,ℓ |Nit,j,ℓ| ≤ C5 and supi,t,j,ℓVar [Nit,j,ℓ] ≤
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C6 for some constants C5, C6 > 0. Applying the Bernstein inequality gives, for any ϵ2 > 0,

P

(∣∣∣ T∑
t=1

Nit,j,ℓ

∣∣∣ > Tϵ2

)
≤2 exp

(
−

1
2T

2ϵ22∑T
t=1 E[N2

it,j,ℓ] +
1
3C5Tϵ2

)

≤2 exp

(
−

1
2T

2ϵ22
TC6 +

1
3C5Tϵ2

)
.

Take ϵ2 = C7T
−1/2(log n)1/2 for some constant C7 > 0 to be determined later, and the right

hand side of the inequality becomes, for log n/T sufficiently small,

2 exp

(
− 1

2

(C7)
2 log n

C6 +
1
3C5C7T−1/2(log n)1/2

)
≤ 2 exp

(
− (C7)

2 log n

4C6

)
.

Choosing (C7)
2 > 4C6, then for every j, ℓ, it holds that

P

(
sup
i

∣∣∣ 1
T

T∑
t=1

Nit,j,ℓ

∣∣∣ > ϵ2

)
≤

n∑
i=1

P

(∣∣∣ 1
T

T∑
t=1

Nit,j,ℓ

∣∣∣ > ϵ2

)
=2n exp

(
− (C7)

2 log n

4C6

)
→ 0 .

Thus, supi

∣∣∣∣∣∣∣∣∣ 1T ∑T
t=1Nit

∣∣∣∣∣∣∣∣∣
2

= OP

(√
logn
T

)
. This implies (59). Finally, we prove the

bound (60). By Assumption 3.6, it holds that supi
∣∣∣∣∣∣H−1

i

∣∣∣∣∣∣
2
<∞. Moreover, we have

Ĥ−1
iT −H−1

i = H−1
i (HiĤ

−1
iT − I) = H−1

i (Hi − ĤiT )Ĥ
−1
iT

= H−1
i (Hi − ĤiT )H

−1
i +O

(∣∣∣∣∣∣H−1
i

∣∣∣∣∣∣2
2

∣∣∣∣∣∣∣∣∣ĤiT −Hi

∣∣∣∣∣∣∣∣∣2
2

)
, (63)

where

sup
i

∣∣∣∣∣∣∣∣∣ĤiT −Hi

∣∣∣∣∣∣∣∣∣
2
= OP

(√
log n

T

)
holds by an application of the Bernstein inequality which is similar to the one given above.

This completes the proof.

Proof sketch of Theorem 3.7 Both parts follow by simple computations provided that

we can establish the bound

sup
|η−τ |≤ε

sup
i∈{1,...,n}

|α̂i(η)− α∗
i (η)| = OP

(√
log n

T

)
.

for some ε > 0. This can be established by following the arguments given in Step 1–

Step 3 in the proof of Theorem 3.2 in Kato et al. (2012). Note that all empirical processes

appearing in those steps retain the same complexity (in terms of VC dimension and envelope

functions). Note also that the assumption that T grows at most polynomially in n made

in their Theorem 3.2 can be dropped at the cost of replacing log n by log(T ∨ n), see also
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the discussion in the latter paper following Theorem 3.2. 2

9.4.1 Proof for quantile regression in the dependent case (Theorem 3.6)

Before proving Theorem 3.6 we collect some preliminary technical results. Let Sp+1 :=

{a ∈ Rp+1, ∥a∥2 = 1}. Let T̃ = [τ − ε, τ + ε] where ε > 0 is such that T̃ ⊂ T for T from

Assumption 3.8. Define the function classes

G1 :=
{
(z, y) 7→ a⊤z(1l{y ≤ z⊤b} − τ)1l{∥z∥2 ≤ κ} : b ∈ Rp+1, τ ∈ T̃ ,a ∈ Sp+1

}
. (64)

G2(δ) :=
{
(y, z) 7→ a⊤z(1l{y ≤ b⊤

1 z} − 1l{y ≤ b⊤
2 z})1l{∥z∥2 ≤ κ}

∣∣∣∥b1 − b2∥2 ≤ δ,a ∈ Sp+1
}
.

(65)

Further, define the functions

gb,k,ℓ(z1, z2, y1, y2) := z1,kz2,ℓ(1l{y1 ≤ z⊤1 b}−τ)(1l{y2 ≤ z⊤2 b}−τ), k, ℓ = 1, . . . , d,b ∈ Rd.

With this notation, let

G3,k,ℓ :=
{
(z1, z2, y1, y2) 7→ gb,k,ℓ(z1, z2, y1, y2) : b ∈ Rp+1

}
,

and

µ3,k,ℓ(b, i, j) := E[gb,k,ℓ(zi1, zi,1+j , yi1, yi,1+j)].

Consider the empirical measures Pi,j,T corresponding to
{
(zi,t, zi,t+j , yi,t, yi,t+j)

}
t=1,...,T

and

denote by P̃i,j the distribution of (zi,1, zi,1+j , yi,1, yi,1+j). Note that for j ̸= 0 this includes

”observations” outside of the observable sample. This quantity only appears in the proofs

and is not used to compute any of the estimators. With this notation we have the following

technical result.

Lemma 9.7. Assume the conditions of Theorem 3.6(i). For n sufficiently large we have

for all s > 0 and all 1 ≪ qn,T with q2n,T log qn,T = o(T ) for constants CG1 , C̃G1

P

(
||Pi,T − Pi||G1 ≥ CG1

(√
log qn,T
T

+

√
s

T
+
sqn,T
T

))
≤ 2e−s + 2Tβ(qn,T ) , (66)

P
(

max
i=1,...,n

||Pi,T − Pi||G1 ≤ C̃G1

√
log(nT )

T

)
≥ 1− 1

nT
. (67)

Further, we also have for all s > 0 and all 1 ≪ qn,T with q2n,T log(mT ∨ qn,T ) = o(T ) and a
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constant CG3 for n sufficiently large

P

(
||Pi,j,T − P̃i,j ||G3,k,ℓ

≥ CG3

(√
mT log qn,T

T
+

√
smT

T
+
sqn,T
T

))
≤ 2e−s + 2Tβ(qn,T )

(68)

max
i,j,k,ℓ

||Pi,j,T − Pi||G3,k,ℓ
= OP

(√mT log(nT )

T

)
.

(69)

Next, let

σ2q,i(g) := Var
( 1
√
q

q∑
t=1

g(zit, Yit)
)

and assume that

σ2n,T (δ) ≥ sup
i

sup
g∈G2(δ)

σ2q,i(g) . (70)

Then for any s > 0 and any qn,T satisfying

q2n,T log
( qn,T
σ2n,T (δ)

)
≤ C̃Tσ2n,T (δ) , (71)

for a certain constant C̃ depending only on κ and the dimension p of zit we have

P

(
||Pi,T − Pi||G2(δ) ≥ C

(√√√√σ2n,T (δ)

T
log
( qn,T
σ2n,T (δ)

)
+

√
σ2n,T (δ)s

T
+
sqn,T
T

))
≤ 2e−s + 2Tβ(qn,T ). (72)

In particular, for δ = δn,T := (CT−1 log(nT ))1/2 with C > 0 arbitrary but fixed we obtain

max
i=1,...,n

||Pi,T − Pi||G2(δn,T ) = OP

((log(nT ))5/4
T 3/4

)
. (73)

Finally, letting Uit := FYit|Xit
(Yit|Xit),

sup
i

∥∥∥∥∥ 1

2TdT

T∑
t=1

zit

(
1l{Uit ≤ τ + dT } − 1l{Uit ≤ τ − dT } − 2dT

)∥∥∥∥∥
2

= OP

(
log n√
TdT

)
. (74)

Proof of Lemma 9.7 The proof strategy for many parts is similar to that in the proof

of Lemma 5 in Galvao et al. (2020) and we will only point out the relevant differences. We

will repeatedly apply Proposition C.2 from Kato et al. (2012). That result requires the

corresponding function classes to be centered. Assume that F is a class of functions that

are not centered and such that supQN(F , L1(Q), ϵ) ≤ (A/ϵ)ν for some constants A, ν and

let F̃ := {f − Pf : f ∈ F}. The it is easy to see that N(F̃ , L1(Q), ϵ) ≤ N(F , L1(Q), ϵ/2)
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and ∥f −Pf∥∞ ≤ 2∥f∥∞ so that Proposition C.2 from Kato et al. (2012) can be applied to

non-centered function classes to obtain bounds on ∥PT f−Pf∥F . This fact will be repeatedly
used throughout the proofs that follow.

Proof of (66) and (67) By the proof of Lemma 5 in Galvao et al. (2020), it holds for

any g ∈ G1 that

||g||∞ ≤ U1, and sup
i

sup
g∈G1

Var
(
g(zi1, Yi1)

)
≤ U2

with some positive universal constants U1 and U2. Moreover, it holds for any probability

measure Q and any 0 < ϵ < 1 that

N(G1, L1(Q), ϵ) ≤ (A/ϵ)ν

with some positive constants A, ν <∞. The claim in (66) follows by Proposition C.2 of Kato

et al. (2012). For (67), let qn,T := C1 log(nT ) with the constant C1 ≥ 1 satisfying bC1
β ≤ e−2

and s = 2 log(nT ). Clearly qn,T ≫ 1, q2n,T log(qn,T ) = o(T ), so (67) follows from the union

bound and simple calculations.

Proof of (68) and (69) Observe that any function in G3,k,ℓ can be expressed as through

sums and products of functions from the classes H1 := {(y1, z1, y2, z2) 7→ z1,kz2,ℓ|1 ≤ k, ℓ ≤
p + 1},H2 := {(y1, z1, y2, z2) 7→ τ − 1l{y1 ≤ z⊤1 b}|b ∈ Rp+1}, H3 := {(y1, z1, y2, z2) 7→
τ − 1l{y2 ≤ z⊤2 b}|b ∈ Rp+1} and that each of the three classes satisfies

N(Hj , L2(Q), ϵ) ≤ (Ã/ϵ)ṽ,

for all 0 < ϵ ≤ 1 and some constants Ã, ṽ < ∞. Hence, by the Cauchy-Schwarz inequality

and Lemma 23 in Belloni et al. (2019) (note that the proof of this Lemma continues to hold

for arbitrary probability measures, discreteness is not required), we find that

N(G3,k,ℓ, L1(Q), ϵ) ≤ (A/ϵ)v,

for some A, v < ∞. Next, note that under Assumption 3.5 the series of random vectors

{ξi,t := (Yit, zit, Yit+j , zit+j)}t∈Z is β-mixing with mixing coefficients β̃(t) satisfying β̃(t) ≤
β(0 ∨ (t − j)). Since the functions in G3,k,ℓ are uniformly bounded, Lemma C.1 in Kato

et al. (2012)(applied with δ = 1 in the notation of that Lemma) yields

|Cov(g(ξi,t), g(ξi,t+j))| ≤ Cβ̃(j)1/2

for a constant C independent of n, T, i. For g ∈ G3,k,ℓ let

σ2q,i,j(g) := V ar
( 1
√
q

q∑
t=1

f(Yit, zit, Yit+j , zit+j)
)
.
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We have

σ2q,i,j(g) = V ar(f(ξi,t)) + 2

q−1∑
j=1

(
1− j

q

)
Cov(f(ξi,1), f(ξi,1+j))

≤ C + 2C

mT∑
j=1

(
1− j

q

)
+ 2C

q−1∑
j=mT

β̃(j)1/2

≤ 2(mT + 1)C + 2C
∞∑
j=1

β̃(j)1/2

≤ C̃(mT + 1)

for a constant C̃ independent of i, n, T . The claim in (68) follows by an application of

Proposition C.2 in Kato et al. (2012). To obtain (69), set s = 4 log(nT ) and qn,T =

C log(nT ) with C chosen such that β(C) ≤ e−4.

Proof of (72) and (73) By the proof of Lemma 5 in Galvao et al. (2020), it holds for

any g ∈ G2(δ) that

||g||∞ ≤ U2

with some constant U2 > 0, and it also holds for large n, T satisfying 1
nT ≤ δ ≤ 1 that

σ2q,i(g) = Var
( 1
√
q

q∑
t=1

g(zit, Yit)
)
≤Cσ,2δ log(nT ), i = 1, . . . , n ,

where Cσ,2 is a constant. Moreover, by the first display in the proof of Lemma 5 in Galvao

et al. (2020), it holds for any probability measure Q and any 0 < ϵ < 1 that

N(G2(δ), L1(Q), ϵ) ≤ (A/ϵ)ν

with some positive constants A, ν < ∞. Invoking Proposition C.2 of Kato et al. (2012)

gives (72). To prove (73) pick

qn,T := C1 log(nT )

with the universal constant C1 ≥ 1 satisfying bC1
β ≤ e−2, and set

σ2n,T := Cσ,2 log(nT )δ .

With this choice (70) holds by definition and we have

q2n,T
σ2n,T

log
( qn,T
σ2n,T

)
≲

√
T log(nT )1/2 log(T )1/2 = o(T )

so that (71) holds for n, T large enough. Let sn,T := 2 log n. By elementary computations

using the fact that log(n)3 = o(T ) by assumption the claim follows by applying the union
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bound.

Proof of (74) Denote the k-th element of vector zit by zit,k. Define the function fk

via

fk : Rd × R → R

(zit, Yit) 7→ zit,k

(
1l{Uit ≤ τ + dT } − 1l{Uit ≤ τ − dT } − 2dT

)
.

By Lemma 11 in Galvao et al. (2020), we have

sup
i,t,k

|fk(zit, Yit)| ≤ C1, E[fk(zit, Yit)] = 0 ,

and

σ2q,i(f) := Var
( 1
√
q

q∑
t=1

fk(zit, Yit)
)
≤ C2dT | log(dT )| ,

where C1, C2 are constants independent of i, T. Note that the constants are independent of i,

throughout the proof we drop the dependence of σ2q,i(f) on i, and denote it by σ2q (f) instead.

Applying Corollary C.1 in Kato et al. (2012), we have for some constant C independent of

i, T, k and qn,T ∈ [1, T2 ] and for some sn,T > 0

P

(∣∣∣∣∣ 1T
T∑
t=1

fk(zit, Yit)

∣∣∣∣∣ ≥ C

(√
(sn,T ∨ 1)
√
T

σq(f) +
sn,T qn,T

T

))
≤ 2e−sn,T + 2Tβ(qn,T ) .

Set sn,T := 2 log n and let

qn,T := C1 log(nT )

where C1 > 1 is a constant satisfying bC1
β ≤ e−2. Then, it holds for some large n and T and

a small dT that√
(sn,T ∨ 1)
√
T

σq(f) +
sn,T qn,T

T
≤
√

2 log n

T

√
dT

√
log
( 1

dT

)
+
C1 log n log(nT )

T
.

By Assumption 3.11 and T grow at most polynomial in n, we have√
2 log n

T

√
dT

√
log
( 1

dT

)
+
C1 log n log(nT )

T
≲

log n√
T

√
dT +

(log n)2

T
.

Moreover, note that

2e−sn,T + 2Tβ(qn,T ) ≲
1

n2
+

1

n2T
.

Taking the union bound over i = 1, . . . , n then gives

sup
i

∥∥∥∥∥ 1

2TdT

T∑
t=1

zit

(
1l{Uit ≤ τ + dT } − 1l{Uit ≤ τ − dT } − 2dT

)∥∥∥∥∥
2

= OP

(
log n√
TdT

)
.
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This completes the proof of (74). Now the proofs of all results in Lemma 9.7 are complete.

2

9.4.2 Proof of Theorem 3.6 (i)

The Lemma C.2 in Chao et al. (2017) can be used in our framework by setting t = 2, n =

T, ξm = κ, gn = 0, which implies the following for each i ∈ {1, . . . , n}{
sup
τ∈T

∥γ̂i − γ∗
i ∥2 ≤

4 ||Pi,T − Pi||G1

infτ∈T λmin(J̃i)

}
⊇
{
||Pi,T − Pi||G1 <

infτ∈T λ
2
min(J̃i)

8κf ′λmax

(
E
[
zitz⊤it

])} , (75)

where J̃i := E
[
zitz

⊤
itfYit|zit(z

⊤
itγ

∗
i |zit)

]
, with the function class G1 defined in (64). By the

assumption that (log n)3 = o(T ) and Assumptions 3.6-3.8, it holds for sufficiently large n, T

that

C̃G1

√
log(nT )

T
≤ infτ∈T λ

2
min(J̃i)

8κf ′λmax

(
E
[
zitz⊤it

]) . (76)

Define the event

ΩG1 :=
{
||Pi,T − Pi||G1 ≤ C̃G1

√
log(nT )

T

}
. (77)

By the relation (75), we obtain that on the event ΩG1 , it holds that

sup
τ∈T

∥γ̂i − γ∗
i ∥2 ≤ C3

√
log(nT )

T
,

where C3 > 0 is a constant independent of i, n, T . Combined with (67) we find that for all

sufficiently large n, T

P
(
sup
τ∈T

∥γ̂i − γ∗
i ∥2 ≤ C3

√
log(nT )

T

)
≥ 1− 1

nT
. (78)

This completes the proof of Theorem 3.6 (i). 2

9.4.3 Proof of Theorem 3.6 (ii).

The assumptions made imply that the smallest eigenvalues of the matrices Bi are bounded

away from zero uniformly in i. Since we work in fixed dimension, it suffices to show that

max
i,k,ℓ

|B̂iT,k,ℓ −Bi,k,ℓ|+max
i,k,ℓ

|Ĥ ′
iT,k,ℓ − H̃i,k,ℓ| = oP(1).
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We will consider the two sums separately, starting with B̂iT . Note that

∣∣∣∣∣∣∣∣∣B̂iT −Bi

∣∣∣∣∣∣∣∣∣
2
≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

zitz
⊤
it(f̂it − fit)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

zitz
⊤
itfit − E

[
zitz

⊤
itfit

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣|E[zitz⊤itfit]−Bi

∣∣∣∣∣∣∣∣∣
2
.

The boundmaxi
∣∣∣∣∣∣E[zitz⊤itfit]−Bi

∣∣∣∣∣∣
2
= o(1) follows from standard Taylor expansions sim-

ilarly to the proof of Lemma 8 in Galvao et al. (2020). Further, we have

max
i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

zitz
⊤
it(f̂it − fit)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ κ2max
i,t

|f̂it − fit| = o(1)

by Lemma 9.8. To bound maxi

∣∣∣∣∣∣∣∣∣T−1
∑T

t=1 zitz
⊤
itfit − E

[
zitz

⊤
itfit

]∣∣∣∣∣∣∣∣∣
2
note that the entries

of zitz
⊤
itfit are uniformly bounded. Thus an application of Lemma C.1 from Kato et al.

(2012) shows that Var (T−1
∑T

t=1 zitz
⊤
itfit) ≤ C1 for a constant C1. Now apply Corollary

C.1 from Kato et al. (2012) with s = 2 log n, q = c log(nT ) for a suitable constant c to

obtain maxi

∣∣∣∣∣∣∣∣∣T−1
∑T

t=1 zitz
⊤
itfit − E

[
zitz

⊤
itfit

]∣∣∣∣∣∣∣∣∣
2
= oP(1).

Next we proceed to bound
∣∣∣∣∣∣∣∣∣Ĥ ′

iT − H̃i

∣∣∣∣∣∣∣∣∣
2
. Recall the notation from the paragraph

before Lemma 9.7. Observe the decomposition

[Ĥ ′
iT ]k,ℓ − [H̃i]k,ℓ = τ(1− τ)

1

T

T∑
t=1

{
[zitz

⊤
it ]k,ℓ − E

[
[zitz

⊤
it ]k,ℓ

]}
+

∑
1≤j≤mT

(
1− j

T

)(
Pi,j,T gγ̂i(τ),k,ℓ − µ3,k,ℓ(γ̂i(τ), i, j)

)
+

∑
1≤j≤mT

(
1− j

T

)(
µ3,k,ℓ(γ̂i(τ), i, j)− µ3,k,ℓ(γ

∗
i (τ), i, j)

)
+

∑
1≤j≤mT

(
1− j

T

)
µ3,k,ℓ(γ

∗
i (τ), i, j)−

∞∑
j=1

µ3,k,ℓ(γ
∗
i (τ), i, j)

+Rn,T,k,ℓ,i(τ)

=:

4∑
j=1

∆
(j)
i,k,ℓ,n,T (τ) +Rn,T,k,ℓ,i(τ).

where Rn,T,k,ℓ,i(τ) arises due to the summation range over Tj . Note that

sup
i,k,ℓ

|Rn,T,kℓ,i| ≤
2m2

Tκ
2

T
= o(1)

since T ≥ |Tj | ≥ T−mT and ∥gγ̂i(τ),k,ℓ∥∞ ≤ 2κ2. The bound maxi,k,ℓ supτ∈T |∆(1)
i,k,ℓ,n,T (τ)| =

oP(1) follows by combining Lemma C.1 and Proposition C.2 from Kato et al. (2012) with

91



s = 2 log n, q = c log n for a suitable constant c. The bound maxi,k,ℓ supτ∈T |∆(4)
i,k,ℓ,n,T (τ)| =

o(1) follows from the arguments in the last paragraph in the proof of Lemma 12 in Galvao

et al. (2020). To bound maxi,k,ℓ supτ∈T |∆(3)
i,k,ℓ,n,T (τ)| = o(1) note that under Assump-

tion 3.10 the maps b 7→ µ3,k,ℓ(b, i, j) are Lipshitz continuous with Lipshitz constant κ2

bounded uniformly in n, T, i, j, k, ℓ. Thus

max
i,k,ℓ

sup
τ∈T

|∆(3)
i,k,ℓ,n,T (τ)| ≤ κ2mT max

i
sup
τ∈T

∥γ̂i(τ)− γ∗
i (τ)∥2 = OP

(
mT

√
log(nT )

T

)
= oP(1)

by the first part of the theorem and Assumption 3.11. Finally, observe that

max
i,k,ℓ

sup
τ∈T

|∆(2)
i,k,ℓ,n,T (τ)| ≤ mT max

i,k,ℓ,j
∥Pi,j,T − P̃i,j∥G3,k,ℓ

= OP

(√m3
T log(nT )

T

)
= oP(1)

where we used (69) and the assumption on mT . This completes the proof of Theorem 3.6

(ii). 2

9.4.4 Technical results used in the proof of Theorem 3.6 (ii)

Lemma 9.8. Let the assumptions stated in Theorem 3.6(i) and Assumption 3.11 hold.

Then

sup
i,t

|f̂it − fit| = o(1).

Proof of Lemma 9.8 The proof strategy follows from Lemma 11 in Galvao et al. (2020),

where we employ the Bernstein inequality for β-mixing sequences (Corollary C.1 in Kato

et al. (2012)). Define êit := f̂−1
it and eit := 1/fit. By definitions of êis and eis it holds that

êis − eis = z⊤is

((
γ̂i(τ + dT )− γ∗

i (τ + dT )
)
−
(
γ̂i(τ − dT )− γ∗

i (τ − dT )
))
/2dT .

By Lemma 9.9and the assumptions log(nT )
Td2T

= o(1), log(n)3 = o(T ) we obtain

max
i,s

|êis−eis| ≤ 2κ2max
i

∣∣∣∣∣∣B−1
i

∣∣∣∣∣∣
∞max

i

∥∥∥ 1

2TdT

T∑
t=1

ψi,τ+dT (zit, Yit)−ψi,τ−dT (zit, Yit)
∥∥∥
2
+oP(1).

Letting Uit := FYit|Xit
(Yit|Xit) we see that 1l{Yit ≤ γ∗

i (τ ± dT )} = 1l{Uit ≤ τ ± dT } and

hence

1

2TdT

T∑
t=1

ψi,τ+dT (zit, Yit)− ψi,τ−dT (zit, Yit)

=
1

2TdT

T∑
t=1

zit

(
1l{Uit ≤ τ + dT } − 1l{Uit ≤ τ − dT } − 2dT

)
Thus maxi,s |êis − eis| = oP(1) by (74). Finally, under the assumptions made we have
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mini,t eit ≥ 1/fmax, see (62). The claim follows by a Taylor expansion of x 7→ 1/x. 2

Lemma 9.9. Let the assumptions stated in Theorem 3.6(i) and Assumption 3.11 hold. It

holds for every i ∈ {1, . . . , n} that

γ̂i(τ)− γ∗
i (τ) = − 1

T
B−1

i

T∑
t=1

ψi,τ (zit, Yit) +Rn,T,i(τ) ,

where

Bi := E[fY |z(qi,τ (zi1) | zi1)zi1z⊤i1], ψi,τ (z, Y ) := z(1l(Y ≤ qi,τ (z))− τ ,

and

sup
i

sup
τ∈T

∥Rn,T,i(τ)∥2 = OP

(
(log(nT ))5/4

T 3/4

)
.

Proof of Lemma 9.9 Observe the decomposition

γ̂i(η)− γ∗
i (η) = − 1

T
B−1

i

T∑
t=1

zit(1l(Yit ≤ qi,η(zit))− η) + ri,1(η) + ri,2(η) + ri,3(η),

where

ri,1(η) :=
1

T
B−1

i

T∑
t=1

zit(1l(Yit ≤ z⊤it γ̂i(η))− η),

ri,2(η) := − 1

T
B−1

i

T∑
t=1

{
zit

(
1l(Yit ≤ z⊤it γ̂i(η))− 1l(Yit ≤ z⊤itγ

∗
i (η))

)
−
∫
z[FY |Z(z

⊤γ̂i(η) | z)− FY |Z(z
⊤γ∗

i (η) | z)]dP zi1(z)
}
,

ri,3(η) := −B−1
i

[ ∫
z[FY |Z(z

⊤γ̂i(η) | z)− FY |Z(z
⊤γ∗

i (η) | z)]dP zi1(z)−Bi(γ̂i(η)− γ∗
i (η))

]
.

Let R
(1)
iT (η) := ri,2(η), R

(2)
iT (η) := ri,1(η) + ri,3(η). Following the arguments in the proof of

Theorem 5.1 in Chao et al. (2017) with n = T,m = p + 1, ξm = κ, gn = 0, and cn = 0 we

have almost surely

sup
η∈T

∥ri,1(η)∥ ≲ T−1.

Moreover, on the event

max
i

sup
η∈T

∥γ̂i(η)− γ∗
i (η)∥ ≤ δ

we have

sup
η∈T

∥ri,2(η)∥ ≲ max
i

||Pi,T − Pi||G2(δ)

and supη∈T ∥ri,2(η)∥ ≲ δ2 where the constants in ≲ depend on the constants from Assump-

93



tion 3.6–3.8 only. Letting δ = C3

√
T−1 log(nT ) and recalling (78) and (73) completes he

proof. 2

Proof sketch of Theorem 3.8. The results for the first part can be established by following

the arguments given in the proof of Theorem 5.1 in Kato et al. (2012), which are parallel

to the step 1-3 in the proof of Theorem 3.2 therein. The results for the second part can be

proved similarly to those for the second part of Theorem 3.6.
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