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Overview

Topics:

What is a compound decision problem and its application in economics.

Empirical Bayes estimators and how they perform.
I Normal mean problem: parametric vs nonparametric shrinkage
I Computation methods.

Other compound decisions: testing; ranking/selection

Empirical Bayes Inference

(If time permits) Beyond Normal model : Poisson and mixture models in general
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Motivating Example: Teacher Value Added

Let Ỹij be the test outcomes of student j taught by teacher i :

Ỹij = αi + X ′ijβ + uij , i = 1, . . . , n; j = 1, . . . Ji .

Xij captures family background, lagged test outcomes etc.

αi is the value added of teacher i (also known as teacher fixed effects).

Estimating αi for all i is of interest:
I Evaluation of teachers.
I Understand heterogeneity of teacher quality.
I Select top/bottom quality teachers.

Fixed effect estimator for αi : Yi = J−1
i

∑
j(Ỹij − X ′ij β̂).

When Ji is reasonably large: Yi | αi , Ji ≈ N (αi , σ
2
u/Ji ).
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Compound Decision Problem

We face n independent statistical decision problems (i.e. observe Yi , estimate αi ).

They have similar structure: Yi | αi ∼ Pαi .

n is usually large in modern applications.

We care about collective performance: estimator for the vector α = (α1, . . . , αn)
that has good performance as a whole.

This is called compound decision problem (Robbins (1951)).

In contrast to simple decision problem: ignore the ensemble of n problems and
construct estimator for αi individually.
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Assumptions on α

Two types of assumptions on α:

Fixed Effect: α1, . . . , αn treated as unknown parameters.

Random Effect: α1, . . . , αn a vector of random variables with distribution G (i.e.
αi ∼iid G).

Sometimes the literature reserves the name ”compound decision” to the fixed effect
model while using ”empirical Bayes” to refer to the random effect model.
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Compound Decision Problem: Formulation

Consider a population of individuals indexed by i , and Yi measures some outcomes
with the model Yi | αi ∼ Pαi .

We would like to estimate αi for all i .

Vector of estimators for α as: δ(Y ) =
(
δ1(Y ), . . . , δn(Y )

)
with Y = (Y1, . . . ,Yn).

Let the loss function be L(α, δ(Y )) = 1
n

∑n
i=1 L(αi , δi (Y ))

I Squared error loss: L(αi , δi ) = (αi − δi )2.
I Absolute error loss: L(αi , δi ) = |αi − δi |.

Compound Risk (i.e. expected Loss):

Rn(α, δ(Y )) =
1

n
E

n∑
i=1

L(αi , δi (Y ))

=
1

n

n∑
i=1

∫
. . .

∫
L(αi , δi (y1, . . . , yn))dPα1 (y1) . . . , dPαn (yn)

I Estimation risk of each individual matters, but these risks are aggregated.
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Example: Normal Mean Problem

With Pαi = N (αi , 1) and L(αi , δi ) = (αi − δi )2, we have the normal mean problem:

Yi = αi + ui , ui ∼ N (0, 1), i = 1, . . . , n

Goal: find δ(Y ) to make the compound risk small.

Two well-known estimators:

Fixed Effect Estimator (i.e. MLE): δMLE
i (Y ) = Yi , only use information from

individual i.

Linear Shrinkage estimator (James and Stein (1961)): δJSi (Y ) = (1− n−2
S

)Yi with
S =

∑
i Y

2
i , use all Y1, . . . ,Yn for data dependent shrinkage of each i .

Stein (1956), James and Stein (1961): Rn(α, δJS) < 1 = Rn(α, δMLE ) as soon as
n ≥ 3 for any vector α. (i.e. MLE is inadmissible).

This is a finite sample frequentist result.
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Why data dependent shrinkage?

Consider the class of linear shrinkage estimators of the form

δ(Y ) = {(1− b)Y1, . . . , (1− b)Yn}

for some b ≥ 0.

Then compound risk Rn(δ(Y ),α) = (1− b)2 + b2∑
i α

2
i /n.

Minimize: b∗ = argminbRn(δb(Y ),α) = n/
∑

i (1 + α2
i ).

Optimal b∗ depends on α, but only through
∑

i E(Y 2
i ).

– Recall Yi = αi + ui , ui ∼ N (0, 1), then E(Y 2
i ) = α2

i + 1.

James-Stein suggested b̂∗ = (n − 2)/
∑

i Y
2
i and showed

Rn(δJS ,α) ≤ 2

n
+

1

n

(n − 2)
∑

i α
2
i

(n − 2) +
∑

i α
2
i

When αi = 0 for all i , biggest improvement: Risk bounded by 2/n (MLE risk = 1).

Always improvement provided n ≥ 3.

Shrinkage: introduce bias to individual estimators to improve overall performance.
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Bayesian Interpretation of Frequentist’s Shrinkage (Efron and Morris)

Consider the random effect assumption: αi ∼iid G = N (0,A).

We have a Bayesian model: G is the subjective prior on αi .

A natural optimal principle: minimize Bayes risk: EG

(
Eα(L(α, δ(Y )))

)
leads to

optimal Bayes estimator.

With squared error loss: optimal Bayes estimator is E[α|Yi ].

For nomal mean problem, δBayesi (Y ) = (1− 1
A+1

)Yi .

δBayesi shrinks Yi towards zero (the prior mean).

Since Y ∼ N (0, (A + 1)In), then S =
∑

i Y
2
i ∼ (A + 1)χ2

n and E[ n−2
S

] = 1
A+1

.

Hence δJS estimator replaces 1
A+1

in δBayes by an unbiased estimator, giving rise to
the name empirical Bayes.

With G = N (0,A), δJS mimics the optimal Bayes estimator.

But recall Stein’s result holds without any Bayesian assumption on α, there is
always an improvement in MSE.
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Extensions

Positive part of James-Stein estimator:

Since 1− 1
A+1

> 0, δJS+
i = (1− n−2

S
)+Yi provides further improvement especially

with small n.

Non-zero prior mean: Consider instead αi ∼iid G = N (α0,A).

The Bayes estimator shrinks towards α0

δBayesi (Y ) = α0 + (1− 1

A + 1
)(Yi − α0)

The corresponding James-Stein estimator:

δJS
i (Y ) = Ȳ + (1− n − 3∑

i (Yi − Ȳ )2
)(Yi − Ȳ )

with Ȳ = n−1∑
i Yi

Dominates MLE when n ≥ 4.

Other variants in Chris’s section.
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Baseball Batting Averages

Efron and Morris (1975): 18 MLB baseball players. We observe the hits (Hi ) for the
first 45 at bats (Ni = 45 ∀i), and we want to predict for the remainder of the season
the hitting performance Hi ∼ Binom(Ni , pi ).

Variance-stabilizating transformation:

Yi =
√
Niarcsin(2Hi/Ni − 1) ≈ N(αi , 1), αi =

√
Niarcsin(2pi − 1)

Mean Squared Errors (using the remaining season’s realized pi to calculate αi ).

MLE James-Stein
n−1∑

i (αi − δi )2 1.11 0.348
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Further Improvements?

Under fixed effect assumption:

James-Stein estimator mimics optimal estimator in the class
δ(Y ) = {(1− b)Y1, . . . , (1− b)Yn} with b ≥ 0.

Can we do better if we enlarge the class of estimators?

Under random effect assumption:

James-Stein estimator mimics the optimal Bayes rule when prior G = N .

Can we do better if prior G 6= N ?

13 / 54 Jiaying Gu (U of Toronto) Empirical Bayes Methods



Revisit the Compound Decision Problem Robbins (1951, 1956)

Fixed Effect Model: α is a vector of unknown parameters.

Given αi , suppose Yi has density p(· | αi ).

Consider the class of separable estimator δ(Y ) = {t(Y1), . . . , t(Yn)} for some fixed
function t : R→ R.

Compound Risk:

Rn(α, δ(Y )) =
1

n
E

n∑
i=1

L(αi , δi (Y ))

=
1

n

n∑
i=1

E L(αi , t(Yi )) (separable estimator)

=
1

n

n∑
i=1

∫
L(αi , t(y))p(y | αi )dy (expectation w.r.t. Yi |αi )

=

∫ ∫
L(α, t(y))p(y | α)dydGn(α) (Bayes risk with prior Gn)

where Gn is the empirical CDF of (α1, . . . , αn) (i.e. Gn(u) = n−1∑
i 1{αi ≤ u}).

Fundamental Theorem of Compound Decision: Compound risk is equivalent to the
Bayes risk of a single copy of the compound problem with prior Gn.
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Nonparametric Empirical Bayes

Compound Risk

Bayes Risk with prior Gn optimal Bayes estimator tGn (Yi )

mimic tGn (Yi ) by estimating Gn

Holds for any p(· | αi ) and any L.

Not knowing the prior Gn, optimal Bayes estimator is not feasible.

Y1, . . . ,Yn contains information about α1, . . . , αn, use them to estimate Gn.

James-Stein estimates the second moment of Gn (recall b∗ = n/
∑n

i=1(α2
i + 1)).

Robbins: estimate the whole distribution Gn, hence nonparametric empirical Bayes.

It is more ambitious than linear shrinkage as it targets the minimum of compound
risk over a larger class of estimator.
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Nonparametric EB for normal mean problem

With L(α, t(y)) = (α− t(y))2, for any Gn, the optimal Bayes estimator is

tGn (Yi ) = E[α|Yi ] =

∫
αp(Yi | α)dGn(α)∫
p(Yi | α)dGn(α)

g-modeling: Gn unknown, estimate from data and plug in.

applicable for any form of p(y |α).

Estimating Gn is a deconvolution problem with Yi = αi + ui .

If Yi = αi + ui , ui ∼ N (0, 1), the Bayes estimator simplifies to the Tweedie formula:

tGn (Yi ) = Yi +
f ′(Yi )

f (Yi )

with f (Y ) =
∫
φ(Y − α)dGn(α).

f-modeling: tGn (Yi ) depends on Gn only through f (Y ), directly estimate f (Y ).

specific to the Tweedie formula and thus normal model.

Can g-modeling backfire since we need to estimate Gn nonparametrically?
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Theoretical Guarantee of nonparametric empirical Bayes estimator

Consider a plug-in rule tĜn
(Y ) with nonparametric MLE Ĝn.

Minimum Risk target:

R∗(Gn) = min

∫ ∫
(α− t(y))2φ(y − α)dydGn(α).

Jiang and Zhang (2009): tĜn
(Y ) is asymptotically optimal among all separable

estimators: as n→∞,

rn(tĜn
) := Rn(α, tĜn

)− R∗(Gn) = o(1)R∗(Gn)

uniformly for a wide collection of vectors α.
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What about variance heterogeneity?

Recall Example (Teacher Value Added)

Teacher-specific mean (i.e. Fixed Effect Estimator):

Yi := J−1
i (Ỹij − X ′ij β̂) ≈ N (αi , σ

2
u/Ji )

If we assume Ji ⊥ αi , then we can proceed similarly and deconvolve to estimate Gn

of α nonparametrically (deconvolution under heterogeneous variances).

We can also consider a richer model:

Ỹij = αi + X ′ijβ + uij , uij ∼ N (0, θi ), (αi , θi ) ∼ Gn

and estimate (β,Gn) from the panel data (Gu and Koenker (2017), Soloff et al.
(2021)).
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Parametric or Nonparametric?

In finite samples, the performance difference between parametric and nonparametric EB
depends on the underlying G and the sample size n.

NPEB offers an adaptive approach: as long as n is not too small,

not worse off when G ≈ N
but can be much better for other G .

19 / 54 Jiaying Gu (U of Toronto) Empirical Bayes Methods



A Simulation Example (Gilraine, Gu, McMillan (2020))

Yi = αi + ui , i = 1, . . . , n = {100, 500, 1000, 2000, 10000, 12000}, ui ∼ N (0, 0.25/J),
J ∈ {8, 16} with equal prob.

DGP 1: Normal G = N (0, 0.08)

DGP 2: mixed-Normal G = 0.95N (0, 0.03) + 0.025N (−1, 0.03) + 0.025N (1, 0.03) [Same
mean and variance as G in DGP 1].

Ĝn estimated using NPMLE in REBayes R package.

Plots Risk ratio (Estimator vs Infeasible with known G)
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Visualize Shrinkage

Consider G in DGP 2.
Left: solid (–)PEB, dashed (- -) NPEB, long-dash (- -)MLE 45% line.
Right: upper shows amount of shrinkage under PEB, below shows that of NPEB.
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Teacher Value Added (Gilraine, Gu, McMillan (2020) )

Los Angeles School District Primary School (Grade 3 - 5) student-teacher matched
datasets: 11,000 teachers.

Control for a rich set of covariates, teacher specific mean leads to

Yi = αi + ui , ui ∼ N (0, σ2
u/Ji ), Ji ⊥ αi

with Yi is average test outcome (after controling for covariates) and Ji being the
total number of students taught by teacher i .

We compare the differences of

Parametric EB: assume αi ∼ N (0,A). Kane and Kraiger (2008), Chetty et al.
(2014).

Nonparametric EB: estimate G nonparametrically. Gilraine, Gu, McMillan (2020)
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Estimated VA distribution for LA data

Dash (-×-): Normality imposed; Solid (-•-) : Nonparametric MLE of G.

Vertical dotted line: top/bottom 5%.

Nonparametric Ĝn estimates an asymmetric distribution with smaller left tail [i.e. not as
many low quality teachers].
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Parametric vs Nonparametric EB estimates

Each dot represents a teacher within bottom/top 5% in Yi .

NPEB is more optimistic about teachers at the bottom.
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Computation Methods
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Computation Methods: Overview

Goal: nonparametrically estimate the Bayes rule:

tG (Y ) =

∫
αp(y | α)dG(α)∫
p(y | α)dG(α)

when G is unknown.

Available tools:

f-modeling in normal model: Brown and Greenshtein (2009).

g-modeling: nonparametrically estimate G .
I Nonparametric MLE: Kiefer and Wolfowitz (1956).
I EM algorithm (Laird (1978)).
I Interior Point algorithm: Koenker and Mizera (2014) REBayes R package
I Efron’s logspline g: deconvolveR package

Demo on two examples

What if G is not point identified?
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f-modeling

Recall in the normal mean problem, the Tweedie formula takes the form

tG (Y ) = E[α|Y ] =

∫
αφ(Y − α)dG(α)∫
φ(Y − α)dG(α)

= Y +
f ′(Y )

f (Y )

where f (Y ) =
∫
φ(Y − α)dG(α) is the marginal density of Y .

Brown and Greenshtein (2009): Estimate f (Y ) and f ′(Y ) using kernel methods.

Disadvantage:
I Kernel method doesn’t respect the hierarchical structure of the model (i.e. the fact

that f is a mixture density).
I As a consequence, estimator does not respect the fact that tG (Y ) is monotone in Y

(t′G (Y ) = Var(α|Y ) > 0).

Improvement:
I Koenker and Mizera (2014) imposes shape constraint to enforce monotonicity for the

normal mean problem.
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g-modeling: nonparametric MLE for G

Ĝn := argmax
G∈G

{ n∑
i=1

log
(∫

φ(yi − α)dG(α)
)}

For the normal mean problem G is identified: Gaussian deconvolution Y = α + u.

Kiefer and Wolfowitz (1956): As n→∞, Ĝn is a consistent estimator of G .

Lindsay (1985): Solution Ĝn exists and is a discrete probability measure, with no
more than n mass points in the interval [mini yi ,maxi yi ].

Polyanskiy and Wu (2020): If the true G is sub-gaussian, then number of mass
points is O(log n) with high probability.

We can generalize to

max
G∈G

{ n∑
i=1

log
(∫

p(yi | α)dG(α)
)}

As long as p(· | α) belongs to the exponential family, Lindsay’s result holds.
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EM algorithm: Laird (1978)

EM algorithm has been widely used for finite mixture model: e.g. Heckman and
Singer (1984) for Weibull mixture.

We pick a K (number of mass points) and the algorithm iteratively optimizes for
locations and weights.

We slowly increase K until likelihood no longer improves.

This is a tough problem: non-convex.

– the set of discrete distribution with K mass points is not a convex set.

Relaxing finite mixture problem to infinite mixture problem restores convexity.
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Interior Point algorithm

Dual problem:

max
{ n∑

i=1

log vi |
n∑

i=1

viφ(yi − α) ≤ n for all α
}

n variables, infinite number of dual constraints.

Koenker and Mizera (2014) suggested taking a fixed and fine grid and enforce dual
constraints on the grid:

ĜL = min
G∈GL

{
−

n∑
i=1

log
(∫

φ(yi − α)dG(α)
)}
,

where GL is the class of probability measures supported on the fixed grid.

This is still a convex optimization problem: modern interior point algorithm scales
well with n and is very efficient.

Implementation in REBayes R package using mosek.

Generalizes to a variety of p(· | α): Gaussian, Poisson, Binomial, Weibull, Gamma...
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Efron’s log-spline

Again take a fixed grid {u1, . . . , uL}.
Assume G has a density g , belonging to exponential family with parameter µ ∈ Rp:

g(µ) = exp(Qµ− ψ(µ))

where Q is a matrix of dimension L× p. The `-th entry is g evaluated at u`.

Efron (2014) suggested using natural splines with p parameters.

p is a user choice (larger p means more flexible).

We then optimize µ with a penalized likelihood:

max
µ

{ n∑
i=1

log
L∑
`=1

φ(yi − u`)g`(µ)− λ‖µ‖
}

λ is another tuning parameter, shrinking µ towards the origin, and penalize Ĝ
towards uniform.
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Demonstration: discrete G

Yi = αi + ui , ui ∼ N (0, 1), αi ∼ G = 0.5δ1 + 0.5δ4.

The NPMLE estimator Ĝn and the implied f̂n with n = 4000. Truth (blue).
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Demonstration: discrete G

Yi = αi + ui , ui ∼ N (0, 1), αi ∼ G = 0.5δ1 + 0.5δ4.

Efron’s estimator Ĝn and the implied f̂n with n = 4000.

E1 (black): p = 5, λ = 0.1. E2 (red): p = 10, λ = 0.1. Truth (blue).
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Demonstration: continuous G

Yi = αi + ui , ui ∼ N (0, 1), αi ∼ G = N (0, 2).

The NPMLE estimator (black) Ĝn and its kernel smoothed version (red) and their
implied f̂n with n = 4000.
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Demonstration: continuous G

Yi = αi + ui , ui ∼ N (0, 1), αi ∼ G = N (0, 2).

Efron’s estimator Ĝn and the implied f̂n with n = 4000.

E1 (black): p = 5, λ = 0.1. E2 (red): p = 10, λ = 0.1. Truth (blue).

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Efron's ghat

α

G
(α

)

E1
E2
Truth

−6 −4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Efron's fhat

Y

f(
Y

)

E1
E2
Truth

35 / 54 Jiaying Gu (U of Toronto) Empirical Bayes Methods



When G is not point identified

When outcome variables are discrete, it is more likely for G to be not identified.

Binomial mixture: Yi ∼ Binomial(k, pi ), e.g. Kline and Walters (2021) where Yi are
job recalls.

We can only learn k moments of G from the frequency of Y .

We have a set of distributions G that are observationally equivalent even when we
know population frequency.

If the parameter of interest is a function of G , then it is only partially identified and
we can construct a bound.
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Summary

Use Empirical Bayes estimators when collective performance matters, not individual
performance.

We have tools to estimate Gn nonparametrically, and it can be beneficial when n is
moderately large.
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Isn’t deconvolution hard?

Deconvolution for Gn is a hard problem: rate for Ĝn is logarithmic

fG1 ≈ fG2 6⇒ G1 ≈ G2

But: if parameter of interest results from smoothing Gn, performance can be good.

Marginal density fĜn
(y) =

∫
φ(y − α)dĜn(α).

– Hellinger risk bound log2 n/n (Zhang (2009), Polyanskiy and Wu (2020)).

Linear functionals
∫
g(α)dĜn(α) are discussed in van der Geer (2000, Chapter 11).
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Beyond normal mean problem

Learning G opens door to other inquiries about αi ’s:

Heterogeneity: Var(α) =
∫
α2dG − (

∫
αdG)2.

Tail probability:

P(α ≥ u|Y ) =

∫
1{α ≥ u}p(y | α)dG/

∫
p(y | α)dG

Tail mean:

E[α | Y ≥ u] =

∫ ∫
α1{y ≥ u}p(y | α)dydG/

∫ ∫
1{y ≥ u}p(y | α)dydG

Learning G can be useful in other compound decision problems.
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Other compound decision problems:
testing, ranking/selection
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Another Simple Compound Decision Problem (Robbins 1951)

Yi = αi + ui , αi ∈ {−1, 1}, ui ∼ N (0, 1)

Loss function: L(αi , δi ) = 1
2
|αi − δi | for δi ∈ {−1, 1}: incur loss one if δi makes a

wrong guess, otherwise zero.

Gn of α is characterized by one number: pn = n−1∑
i 1{αi = 1}.

Compound risk for δi (Y ) = t(Yi ) for some function t:

Rn(α, δ) = (2n)−1E
(∑

i

|αi − t(Yi )|
)

=
1

2

∫ ∫
|α− t(y)|φ(y − α)dydGn

= pn

∫
|1− t(y)|φ(y − 1)dy + (1− pn)

∫
| − 1− t(y)|φ(y + 1)dy

Fundamental theorem of compound decision applies: compound risk = Bayes risk
with prior pn.
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Bayes rule with prior pn

For any pn ∈ (0, 1), the optimal Bayes estimator (with prior pn) takes the form

tpn (Y ) = sgn(Y +
1

2
log

pn
1− pn

)

If pn > 1/2, then 1
2

log p
1−p

> 0, ”shrunk Y ” upwards; otherwise downwards.
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Robbins’s rule

Not knowing pn, Robbins suggested estimating it using the whole data Y1, . . . ,Yn.

A method of moments estimator: p̂n = (n−1∑
i Yi + 1)/2.

Hannan and Robbins (1955): As long as p̂n is consistent, as n→∞,

Rn(α, tp̂n (Y )) = minRn(α, t(Y )) + op(1)

When pn = 1/2, t1/2(Y ) = sgn(Y ) corresponds to the MLE of αi , using tp̂n (Y ) we
are at most ε = op(1) worse off.

When pn 6= 1/2, we can do much better using tp̂n (Y ).
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Risk Comparison

Figure: From Gu and Koenker (2016). Mean absolute loss over 1000 replications.
Black (–) : Robbins; Green (–): Optimal Bayes; Red (–) MLE
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Connection to Multiple Testing

Consider again the normal mean problem

Yi = αi + ui , ui ∼ N (0, 1), αi ∼ G

We are now interested in which αi /∈ A.

Example: with A = {0} we are testing for significance for each individual αi .

Transformed parameters: Hi = 1{αi /∈ A} (i.e. not αi ).

Compound decision with loss

L(δi ,Hi ) =

{
1− τ if δi = 1,Hi = 0 (type I error)

τ if δi = 0,Hi = 1 (type II error)

Distribution of Hi : p0 = P(Hi = 1) = P(αi /∈ A) = G(Ac).
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Connection to Multiple Testing

Optimal Bayes estimator:

δBayesi = 1{P(αi ∈ A|Yi ) ≤ τ}

with

P(αi ∈ A|Yi ) =

∫
A
φ(Yi − α)dG(α)/

∫
R
φ(Yi − α)dG(α)

The quantity P(αi ∈ A|Yi ) is also known as local false discovery rate (Lfdr).

Once we estimate G , we can estimate Lfdr.

Empirical Bayes Multiple Testing: rank individuals by Lfdr and then threshold.

Choice of τ leads to different false discovery rate (proportion of false rejections out
of all rejections).
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Connection to ranking and selection

Gu and Koenker (2022) considers EB methods for ranking and selection problem.

Among all teachers, we’d like to estimate the top q % performers.

Parameter of interest: Hi = 1{αi ≥ G−1(1− q)}.
Rank teachers with Lfdr P(αi < G−1(1− q)|Yi ) and then threshold by τ .

Ranking devices:

Homogenous variances of ui : ranking with Yi ⇔ ranking with g(Yi ) with
monotone g

– i.e. parametric/nonparametric EB, local false discovery rate all give same ranking.

Heterogenous variances of ui : EB methods can produce different rankings.

Role of τ :

τ controls false discovery rate.

τ controls proportion of selection to make.

Design loss function to achieve two goals:

Capacity constraint: we want to select at most q %.

FDR constraint: avoid making too many false discoveries among selection.
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Empirical Bayes Inference
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Empirical Bayes Inference: normal mean with normal prior

Assume αi ∼iid G = N (0,A), then Bayes estimator δi = (1− 1
1+A

)Yi .

Bayesian credible set for αi with 95% coverage if we knew A:

[q0.025(yi ,A), q0.975(yi ,A)] = δi ± 1.96
√

A/(1 + A)

with qτ (yi ,A) being the τ quantile of posterior distribution

αi |yi ,A ∼ N
( A

1 + A
yi ,

A

1 + A

)
Naive EB confidence interval [qτ/2(yi , Â), q1−τ/2(yi , Â)] does not account for the
fact that A is estimated, and this gives poor coverage when n is small.

Morris (1983) provides a finite sample correction: add a correction term to√
Â/(1 + Â).
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More Robust Empirical Bayes Inference

Armstrong et al. (2022) shows if G 6= N , coverage of the naive EBCI can be poor.

They provide a robust EBCI:

CIi,τ = δi ± ĉτ

√
Â/(1 + Â)

such that 1
n

∑n
i=1 P(αi ∈ CIi,τ ) ≥ 1− τ .

EBCI as a compound decision (Jiang (2021)) :

min
a,b

1

n

n∑
i=1

E[b(Yi )− a(Yi )]

subject to
1

n

n∑
i=1

P(a(Yi ) ≤ αi ≤ b(Yi )) = 1− τ
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Conclusion

Empirical Bayes methods can be useful for economics application as we become
more interested in unobserved heterogeneity.

Herbert Robbins is ahead of his time in proposing the nonparametric EB method in
1950s.

Large scale individualized datasets become increasingly available.

Modern computation methods make it feasible to apply his method.
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Optional slides: Compound decision with Poisson model
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Motivating Example 2: Evaluation of dialysis centers

We have information on 3230 dialysis centers in the U.S. over a few time periods.

Outcome Yit : number of deaths.

Covariates Xit : measures of observed patient heterogeneity.

Poisson regression model:

E[Yit |Xit ] = exp(log(αi ) + X ′itβ)

αi measures unobserved center quality.

Yit ∼ Poisson(αimit) with mit = exp(X ′it β̂).

Policy maker may be interested in:
I Diversity of quality.
I An estimate of each center’s quality αi .
I Shut down/expand a subset of centers having low/high quality.

2 / 8 Jiaying Gu (U of Toronto) Empirical Bayes Methods



Beyond normal models: Poisson for counts

For simplicity, using 1 year of data:

Yi ∼ Poisson(αimi ), αi ∼ G

where Yi is number of deaths and mi is called exposure, measuring expected number
of deaths at each center.
We are interested in αi : imagine all centers want to purchase insurance and insurer
tries to decide individual specific premium depending on αi .
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Parametric empirical Bayes

Consider prior αi ∼ Gamma(α, β).

Then Bayes estimator

δBayesi =
Yi + α

mi + β

Parametric empirical Bayes: δPEBi = Yi+α̂

mi+β̂
with α̂, β̂ be MLE estimates.
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Poisson: nonparametric empirical Bayes

The ”Tweedie formula” for Poission for (αi ∼ G) leads to

tG (y ,m) = E[α|Y ,m] =

∫
αP(Y = y | α,m)dG(α)∫
P(Y = y | α,m)dG(α)

If mi = m were all the same (absolute into αi = αim), then

tG (y) =
(y + 1)PY (y + 1)

PY (y)

with PY (y) = P(Yi = y).

f-modeling: directly estimate PY ; g-modeling: estimate G and back out PY .

Robbins (1956) proposed to use f-modeling, but empirical frequency of Y doesn’t
necessarily respect monotonicity of tG (y).

Further improvement provided by Brown et al. (2013).

g-modeling: automatically respects monotonicity. Also handles heterogeneous mi

very well.
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Parametric vs nonparametric MLE G

Left: Gamma (in red) vs NPMLE (in black). Right: Plots in the scale of G 1/3 to review
mass points.
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Parametric vs Nonparametric
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Poisson for counts

If we are interested in E[α|Y < t,m], then we can show

E[α|Y < t,m] =

∑t−1
y=0 PY (y ;m)tG (y ,m)∑t−1

y=0 PY (y ;m)
= E[tG (Y ,m)|Y < t,m]

with Py (y ;m) =
∫
P(Y = y | α,m)dG(α).

In contrast, selection bias using Y :

E[α|Y < t,m]− E[Y |Y < t,m] =
tPY (t;m)∑t−1
y=0 PY (y ;m)

> 0

Posterior mean can be shown to cure selection bias (Dawid (1994)), only when G is
reasonable. Poor prior can produce poor posterior.
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