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1 Introduction

Dynamic games are useful tools for the analysis of economic and social phenomena characterized

by intertemporal interactions between agents. The structural estimation of dynamic games has

received notorious attention in the study of dynamics of oligopoly competition (Ericson and Pakes,

1995) with empirical applications to different industries.1 These econometric models have been

recently applied also to study dynamic interactions within households (Eckstein and Lifshitz, 2015),

long-term care decisions (Sovinsky and Stern, 2016), electoral competition (Sieg and Yoon, 2017),

or the ratification of international treaties (Wagner, 2016), among other topics. There is also a

substantial literature on dynamic discrete choice models with social interactions where agents are

not forward looking (Brock and Durlauf, 2007; Blume, et al, 2011).

Two types of structural parameters play a fundamental role in the predictions of dynamic games:

the parameters that capture dynamic state dependence, such as costs of switching, adjustment,

investment, or entry and exit, (i.e., the dynamic part of the model); and the parameters that

represent the effects of other players’ actions on a player’s payoff due to competition, spillovers,

peer effects, or social interactions (i.e., the game part of the model). The identification of these

two types of parameters rely crucially on the model assumptions about the stochastic properties of

variables that are known to the players but unobservable to the researcher, i.e., what we can denote

as the specification of unobserved heterogeneity. In dynamic models, it is well known that ignoring

or misspecifying persistent unobserved heterogeneity can imply substantial biases in the estimation

of structural parameters that capture true dynamics (Heckman, 1981). Spurious dynamics due

to unobserved heterogeneity can be confounded with true dynamics due to state dependence. In

the literature on the estimation of games, it is well-known that ignoring unobserved heterogeneity

that is common or correlated across players can generate important biases in the estimation of the

structural parameters that capture strategic (competition) or social (peer) interactions between

players (Bresnahan and Reiss, 1991; Blume, et al, 2011). The common unobserved heterogeneity

can be confounded with positive strategic, social, or peer effects.

In this paper, we study the identification and estimation of dynamic games where N players

are observed playing the game over M markets and T periods of time, where the time dimension T

1Recent applications include industries such as automobiles (Hashmi and Van Biesebroeck, 2016), airlines (Aguir-
regabiria and Ho, 2012), pharmaceuticals (Ching, 2010, Gallant et al., 2017), procurement auctions (Jofre-Bonet and
Pesendorfer, 2003, Groeger, 2014), construction materials (Ryan, 2012, Collard-Wexler, 2013), hotels (Suzuki, 2013),
micro processors (Goetler and Gordon, 2011), hard drives (Igami, 2017), comercial radio (Sweeting, 2013, Jeziorski,
2014), movies (Einav, 2010, Takahashi, 2015), medical services (Dunne et al., 2013), ship building (Kalouptsidi,
2014), fishing (Huang and Smith, 2014), or retail stores (Aguirregabiria and Mira, 2007, Toivanen and Waterson,
2011, Igami and Yang, 2016), among others.
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is small and the number of markets M is large. Most of our results apply to either a small or large

number of players N . However, for concreteness and notational simplicity, we focus on the case of

small N . We consider the identification of these models when there is time-invariant unobserved

heterogeneity either at the market or player-market level, and the probability distribution of this

heterogeneity and the initial conditions of the endogenous state variables is nonparametrically

specified, i.e., a fixed effects panel data model.

The identification of this model should deal with the incidental parameters problem, and the

initial conditions problem. The incidental parameters problem establishes that a simple dummy-

variables estimator, that treats each market (or player-market) unobservable as a parameter to

be estimated jointly with the parameters of interest, is inconsistent in nonlinear dynamic panel

data models when T is fixed (Neyman and Scott, 1948, Lancaster, 2000). The initial conditions

problem establishes that the joint distribution of the unobserved heterogeneity and the initial values

of the endogenous state variables is not nonparametrically identified, but the misspecification of

this joint distribution can generate important biases in the estimation of the parameters of interest

(Heckman, 1981, Chamberlain, 1985, among others). That is, any approach that tries to jointly

identify structural parameters and distribution of unobserved heterogeneity and initial conditions

needs to impose restrictions on this distribution. In contrast, a fixed effects approach, as the one

considered in this paper, is concerned with the identification of structural parameters but not with

the identification of the distribution of the unobserved heterogeneity.

In this paper, we extend to dynamic discrete choice games the fixed effect conditional likelihood

method pioneered by Cox (1958), Rasch (1961), Andersen (1970), and Chamberlain (1980). This

approach is based on the derivation of sufficient statistics for the incidental parameters (for the fixed

effects) and the maximization of a likelihood function of the data conditional on these sufficient

statistics. The main advantage of this approach is that the estimation of the structural parameters

is robust to any misspecification of the distribution of the unobserved heterogeneity. For those

This paper is related to the literature on identification and estimation of panel data dynamic

discrete choice model with a fixed effects structure, and the seminal work by Chamberlain (1985)

and Honoré and Kyriazidou (2000). More recently, Aguirregabiria, Gu, and Luo (2019) have applied

this approach to the identification single-agent dynamic discrete choice structural models. Honoré

and Kyriazidou (2017) study fixed effects panel data discrete choice VAR models. We build on

the results in Honoré and Kyriazidou (2017) and extend their results in two directions. First,

we study the identification of games where players are forward-looking. In these models, players
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decisions depend on continuation values which are nonlinear functions o unobserved heterogeneity

and state variables. Controlling for these continuation values can complicate obtaining sufficient

statistics for the the incidental parameters in the unobserved heterogeneity. Second, we study the

identification of games with multiple equilibria. The model does not provide a unique prediction for

the probability of a choice history but only bounds. We show how to obtain sufficient statistics for

the effects of incidental parameters in these bounds, and how this implies the partial identification

of the structural parameters. As far as we know, this is the first paper that combines the fixed

effects - sufficient statistics approach with bounds and partial identification.

Furthermore, for those versions of the model where the conditional likelihood method cannot

identify all the structural parameters, we consider a functional differencing method proposed by

Bonhomme (2012). More specifically, we consider a version of functional differencing recently pro-

posed by Dobroyni, Gu and Kim (2021) that is also similar to the one Honoré and Weidner (2020).

This approach is based on the derivation of a general class of moment conditions and moment

inequalities implied by the fixed effects dynamic model. We show that this alternative approach

identifies some important parameters which are not identified using a conditional likelihood method.

Our paper also contributes to the literature of identification and estimation of dynamic games

with unobserved heterogeneity. All the papers in this literature have considered a random effects

approach with a finite mixture specification of the unobserved heterogeneity. Following an approach

proposed by Heckman (1981), Aguirregabiria and Mira (2007) deal with the initial conditions prob-

lem by assuming that the initial conditions come from the market-type-specific ergodic distribution

of the endogenous variables. Arcidiacono and Miller (2011) propose an Expectation-Maximization

(EM) algorithm to deal with the computational burdens of estimating this type of models. Kasa-

hara and Shimotsu (2009) show the nonparametric identification of choice probabilities and the

distribution of unobserved heterogeneity in finite mixture models. Igami and Yang (2016) combine

the results and methods in Arcidiacono and Miller (2011) and Kasahara and Shimotsu (2009) and

apply them to the estimation of dynamic game of market entry in the Canadian fast food restaurant

industry. All these previous results are based on the assumption that unobserved heterogeneity has

a finite mixture distribution, and there are some restrictions on the initial conditions. Our model

does not impose these restrictions.

In a recent paper, Berry and Compiani (2020) propose a two-step IV approach for the estimation

of discrete choice dynamic structural models with serially correlated unobservables. There are

complementarities between their model and method and our approach. Their method allows for
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time variant serially correlated unobservables while our approach imposes the restriction that the

peristent component of unobservables is time invariant. However, their approach is based on a

parametric specification for the stochastic process of the unobservables. They study two types of

parametric models for the unobservables: a linear AR(1) model, and a Markov chain with discrete

support. In contrast, we are interested in identification results under a fixed effects model that

does not impose any restriction on the joint distribution of the time-invariant unobservables and

the initial values of the state variables. Furthermore, for the case of dynamic games, they impose

the restriction of equilibrium uniqueness.

Table 1 provides a summary – or road map – of our identification results. We study the iden-

tification of eight different models that result from the combination of three criteria: (i) players’

discounting of future payoffs – myopic vs. forward-looking model; (ii) players’ information – com-

plete vs. incomplete information; and (iii) strategic interactions between players – Stackelberg

model vs. full strategic interactions. In terms of the identification results, we distinguish two sets

of parameters: switching cost (β) and strategic interactions (γ). We also distinguish between point

and partial (set) identification.

Table 1

Summary of Identification Results: Eight Different Models(1)

Complete Incomplete

Stackelberg Full Stackelberg Full

Myopic Point identification Partial identification Point identification Partial identification

of β11, β22, γ2 of β11, β22, γ1, γ2 of β11, β22 of β11, β22, γ1, γ2
(Proposition 3) (Proposition 8) Partial iden. γ2 (Proposition 9)

(Propositions 5,6)

Forward Point identification Partial identification

Looking of β11, β22 of β11, β22
(Proposition 10) (Proposition 11) (Proposition 12) (Proposition 13)

Note (1): Parameters β11and β22 represent switching costs. Parameters γ1 and γ2 represent

strategic / competition effects.

The rest of the paper is organized as follows. In section 2, we study the identification of

myopic dynamic discrete choice games. These models are interesting by themselves, but they

are also useful because they provide results that we use in the identification of dynamic games

when players are forward-looking. Section 3 presents identification results for dynamic games when

players are forward-looking. In sections 2 and 3 we distinguish different type of models according
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to the information structure (complete vs. incomplete information) and the nature of the strategic

interactions (contemporaneous or lagged). Section 4 deals with estimation and inference. In section

5, we illustrate our identification results in the context of an empirical application. We summarize

and conclude in section 6.

2 Identification of dynamic games with myopic players

2.1 Framework

We index players by i, j ∈ {1, 2}. Subindex m represents a realization of the market where a pair of

agents play the game.2 Time is discrete and indexed by t that belongs to {1, 2, ..., T}. Every period

t, players simultaneously make a binary decision, that we represent using variables y1mt ∈ {0, 1} and

y2mt ∈ {0, 1}. Players maximize their respective expected utility in the market, E[Uimt(yimt, yjmt)

| Iimt], where Iit is the information set of player i in market m at period t, and Uimt(yi, yj) is

her utility if she chooses action yi and the other player chooses yj . This utility function has the

following standard structure:

Uimt = α̃im (yimt) + γ̃i (yimt, yjmt) + β̃ii (yimt, yim,t−1) + β̃ij (yimt, yjm,t−1) + ε̃imt(yit). (1)

α̃im(0) and α̃im(1) are market and player characteristics that are unobservable to the researcher.

The vector αm ≡ {α̃1m(j), α̃2m(j) : j ∈ {0, 1}} represents the fixed effects for market m. The

vector of fixed effects α ≡ {αm : m = 1, 2, ...,M} represents the incidental parameters of the

model. Function γ̃i (yimt, yjmt) represents the contemporaneous competition (strategic) effects.

Function β̃ii captures state dependence with respect the lagged value of the player’s own action,

e.g., adjustment costs, switching costs. Function β̃ij represents state dependence with respect to

the lagged value of the other player’s action, i.e., dynamic strategic interactions between the two

players. The unobservable variables {ε̃imt(a) : a ∈ {0, 1}} are i.i.d. over (i,m, t, a) with a extreme

value type I distribution.

The model can be extended to incorporate exogenous state variables, xmt. For instance, the

functions γ̃i, β̃ii, and β̃ij may depend on xt, or in a more parsimonious specification, we can add a

term δi(yimt)
′xmt to the utility function in equation (1). We also present identification results for

the parameters δi.

We distinguish two types of models according to players’ information structure: complete infor-

mation and incomplete information games. The following assumptions about information structure

2Depending on the empirical application, the particular definition of market can be a geographic location (e.g., a
city, a neighborhood), a school, a family, an industry, an election, etc.
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are common to the two models: (a) lagged choices (yimt−1, yjmt−1), current exogenous state vari-

ables xmt, parameters {α̃im, α̃jm; γ̃i, γ̃j ; β̃ii, β̃jj ; β̃ij , β̃ji}, the probability distribution of ε̃, and the

transition probability function for xmt are known to all the players at period t; and (2) future

values of the exogenous state variables, xm,t+s and (ε̃im,t+s, ε̃jm,t+s) for s ≥ 1, are unknown to all

the players. The difference between the two models is in the treatment of the current values of

the ε̃ variables. For games of complete information we assume that the ε̃ variables are common

knowledge to all the players. For games of incomplete information we assume that variables ε̃imt(0)

and ε̃imt(1) are private information of firm i but unknown to the other players in the game.

Let ∆Uimt represent the utility difference Uimt(1, yjmt) − Uimt(0, yjmt). Since we can only

identify parameters affecting the utility difference, it is convenient to represent the model in terms

of ∆Uimt.

∆Uimt = αim + γi yjmt + βii yim,t−1 + βij yjm,t−1 − εimt (2)

where: αim ≡ α̃im (1) − α̃im (0) + γ̃i (1, 0) − γ̃i (0, 0) + β̃ii (1, 0) − β̃ii (0, 0) + β̃ij (1, 0) − β̃ij (0, 0);

γi ≡ γ̃i (1, 1) − γ̃i (0, 1) − γ̃i (1, 0) + γ̃i (0, 0); βii ≡ β̃ii (1, 1) − β̃ii (0, 1) − β̃ii (1, 0) + β̃ii (0, 0); βij ≡

β̃ij (1, 1) − β̃ij (0, 1) − β̃ij (1, 0) + β̃ij (0, 0); and εimt ≡ ε̃imt(0) − ε̃imt(1). Since ε̃imt(j)
′s are i.i.d.

extreme value type 1 distributed, we have that εimt and εjmt are i.i.d. Logistic distributed.

A Nash equilibrium in the game of complete information is a solution in (y1, y2) to the system

of best response conditions:
y1mt = 1 {α1m + γ1 y2mt + β11 y1m,t−1 + β12 y2m,t−1 − ε1mt ≥ 0}

y2mt = 1 {α2m + γ2 y1mt + β21 y1m,t−1 + β22 y2m,t−1 − ε2mt ≥ 0}
(3)

where 1{.} is the indicator function.

A Bayesian Nash equilibrium in the incomplete information game is a solution in the choice

probabilities (P1mt, P2mt) to the system of equations:
P1mt = Λ (α1m + γ1 P2mt + β11 y1mt−1 + β12 y2mt−1)

P2mt = Λ (α2m + γ2 P1mt + β21 y1mt−1 + β22 y2mt−1)
(4)

where, for i ∈ {1, 2}, Pimt is the choice probability of player i, P [yimt = 1 | αm, y1mt−1, y2mt−1],

and Λ(u) is the the Logistic function exp{u}/[1 + exp{u}].

The researcher observes {y1mt,y2mt} over M markets and T periods, where M is large and T

is small. The model is a fixed effects model in the sense that the joint probability distribution of

the incidental parameters (α1m, α2m) and the initial conditions (y1m0, , y2m0) is nonparametrically

specified. We are interested in the identification of the vector of structural parameters θ = (γi, βij :
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i, j ∈ {1, 2})′. For the rest of this section, we present identification (and under-identification) results

for different versions of this model. For notational simplicity, we omit the market subindex m and

use α to represent the pair of fixed effects (α1m, α2m) for one market.

2.2 Model with no contemporaneous strategic interactions

Consider the model described above under the condition that γ1 = γ2 = 0. The best response

equations for this model are:3
y1t = 1 {α1 + β11 y1t−1 + β12 y2t−1 − ε1t ≥ 0}

y2t = 1 {α2 + β21 y1t−1 + β22 y2t−1 − ε2t ≥ 0}
(5)

Note that this model can be interpreted either as complete or incomplete information because the

value of the opponent’s ε does not have any effect on the best response of a player. Though this

model is dynamic (i.e., past choices affect current choices) and incorporates dynamic interactions

between the agents (i.e., the past choice of player j has an effect on the current choice of player

i), it seems that it is not a game because there are not explicit strategic interactions in the best

responses of the agents. However, it can interpreted as a game under some conditions about the

formation of beliefs.

EXAMPLE 1a (Fictitious play learning). Consider a dynamic binary choice game of incomplete

information where the differential utility of a player is ∆Uit = αi + γi yjt +βii yit−1− εit. The best

response of this player is yit = 1{αi + γi Bit + βii yit−1 − εit ≥ 0}, where Bit is a probability that

represents the belief that player i has about the probability that player j chooses alternative j.

Under the assumption of Bayesian Nash Equilibrium, this belief correspond to the actual probability

P(yjt = 1 | α, y1t−1, y2t−1) in the equilibrium of the game. However, other solution concepts consider

alternative assumptions on players’ beliefs. In particular, under the assumption of fictitious play

learning (Brown, 1951), a player’s belief Bit consists of the frequency of the other player’s choices

during the last R times that the game has been played: Bit = (1/R)
∑R

r=1 yj,t−r. For R = 1, the

best response functions under fictitious play are the ones in equation (5). Examples of empirical

applications include Holt (1999) and Lee and Pakes (2009), among others. �

The terms α1 and α2 are fixed effects. The structural parameters are β11, β12, β21, and β22.

The data for one market consist of the history of choices between periods 1 and T and the initial

conditions (y10, y20). We represent these data using the vector ỹ ≡ (y1t, y2t : t = 0, 1, .., T ) and we

3This model corresponds to the panel data binary choice VAR model studied by Honoré and Kyriazidou (2017).
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refer to this vector as a market history. The model implies the following probability:

P (ỹ | α, β) =

2∏
i=1

T∏
t=1

exp { yit [αi + βi1 y1t−1 + βi2 y2t−1] }
1 + exp {αi + βi1 y1t−1 + βi2 y2t−1}

pα (y10, y20) (6)

where pα (y10, y20) represents the probability of the initial condition given α.

A key property of the logit model is that it facilitates a representation of the log-likelihood which

is additively separable in incidental parameters α and the structural parameters β. We derive now

an expression that illustrates this separability and that plays a key role in the identification results.

Define, for i ∈ {1, 2}, function σαi (y1, y2) ≡− ln[1+exp {αi + βi1 y1 + βi2 y2}], and let σα (y1, y2)

≡ σα1 (y1, y2)+σα2 (y1, y2). Given a choice history ỹ, define the following statistics: T
(1)
i is the num-

ber of times that player i chooses alternative 1, that is,
∑T

t=1yit; for (y1, y2) ∈ {0, 1}2, T (y1,y2) is the

number of times that the two players choose the pair (y1, y2), that is,
∑T

t=11{(y1t, y2t) = (y1, y2)};

C12 is the number of times that player 1 chooses alternative 1 given that player 2 choose alternative

1 at previous period, that is,
∑T

t=1y1t y2t−1; and similarly, we define C21 as
∑T

t=1y2ty1t−1, C11 as∑T
t=1y1ty1t−1, and C22 as

∑T
t=1y2t y2t−1. Then, the logarithm of the probability of a market history

can be written as:

lnP (ỹ | α, β) = ln pα (y10, y20) + α1 T
(1)
1 + α2 T

(1)
2

+
1∑

y1=0

1∑
y2=0

σα (y1, y2) [T (y1,y2) + 1{(y10, y20) = (y1, y2)} − 1{(y1T , y2T ) = (y1, y2)}

+ β11 C11 + β12 C12 + β21 C21 + β22 C22

(7)

Or using a more compact representation:

lnP (ỹ | α, β) = s (ỹ)′ gα + c (ỹ)′ β (8)

where s (ỹ) and c (ỹ) are vectors of statistics, gα is a vector of functions of the incidental parameters,

and β is the vector of structural parameters(β11, β12, β21, β22)
′. More specifically,

s (ỹ)′ = [1, y10, y20, y10y20 ; 1, y1T , y2T , y1T y2T ; T , T
(1)
1 , T

(1)
2 , T (1,1)

]
g′α = [ln p∗α + σ∗α ; −σ∗α ; σ∗α + (0, α1, α2, 0)]

c (ỹ)′ = [C11, C12, C21, C22]
β′ = [β11, β12, β21, β22]

(9)

with ln p∗α ≡ [ln pα(0, 0), ln pα(1, 0) − ln pα(0, 0), ln pα(0, 1) − ln pα(0, 0), ln pα(1, 1) − ln pα(0, 1) −

ln pα(1, 0)+ln pα(0, 0)], and σ∗α ≡ [σα(0, 0), σα(1, 0)−σα(0, 0), σα(0, 1)−σα(0, 0), σα(1, 1)−σα(0, 1)−

σα(1, 0) + σα(0, 0)].
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Given equation (8) we can establish the following identification result.

PROPOSITION 1. For the myopic dynamic game without contemporaneous effects described by

equation (5): (A) The vector s (ỹ) = [1, y10, y20, y10y20, y1T , y2T , y1T y2T , T , T
(1)
1 , T

(1)
2 , T (1,1)] is

a minimal sufficient statistic for α such that lnP (ỹ | s (ỹ) , α, β) does not depend on α. (B) Since

lnP (ỹ | s (ỹ) , α, β) = lnP (ỹ | α, β)− lnP (s (ỹ) | α, β) , we have that

lnP (ỹ | s (ỹ) , β) = c (ỹ)′ β − ln
(∑

ỹ′:s(ỹ′)=s(ỹ) exp {c (ỹ′)′β)}
)

(10)

with c (ỹ) = [C11, C12, C21, C22]
′ and β = [β11, β12, β21, β22]

′. (C) For T ≥ 3, there are pairs of

market histories, say A and B, with s (A) = s (B) and c (A) − c (B) = [1, 0, 0, 0]′ such that the

parameter β11 is identified as β11 = lnP (A)− lnP (B). The same result applies to the identification

of the the other structural parameters β12, β21, and β22. �

Table 2 and Example 1b provide specific histories that identify the parameters of interest when

T = 3.

Table 2
Myopic Game of Complete Information

with no contemporaneous effects
Examples of histories and identified parameters with T=3

A = {y0, a, b, y3}; B = {y0, b, a, y3}

y0 a b y3 lnP (A)− lnP (B)

Case 1:

(
0
0

) (
0
0

) (
1
0

) (
1
0

)
β11

Case 2:

(
0
0

) (
0
0

) (
0
1

) (
0
1

)
β22

Case 3:

(
0
0

) (
0
0

) (
0
1

) (
1
0

)
β12

Case 4:

(
0
0

) (
0
0

) (
1
0

) (
0
1

)
β21

EXAMPLE 1b. Suppose that T = 3. Let yt ≡ (y1t, y2t) and consider the following pair of histories:

A = {y0, a, b, y3} and B = {y0, b,a,y3}. We first verify that histories A and B have the same

sufficient statistic s. It is clear that the two histories have the same initial condition y0, and

last period choices, y3. And it is also clear that the frequency of choices in {a, b, y3} is the
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same as in {b,a,y3} such that T (y1,y2)(A) = T (y1,y2)(B) for any pair (y1, y2) ∈ {0, 1}2. Therefore,

s (A) = s (B). Now, for a 6= b we have that c (A) 6= c (B) and the difference between the log-

probabilities of these histories identifies parameters of interest. Note that,
C11(A)− C11(B) = (a1 − b1) (y10 − y13)
C12(A)− C12(B) = (a1 − b1)y20 − (a2 − b2)y13 + a2b1 − a1b2
C21(A)− C21(B) = (a2 − b2)y10 − (a1 − b1)y23 + a1b2 − a2b1
C22(A)− C22(B) = (a2 − b2) (y20 − y23)

(11)

Using the expressions in (11), we present in Table 2 examples of histories A and B and the

corresponding parameter that is identified by lnP (A) − lnP (B). In cases 1 and 2, we identify

the parameter βii by keeping constant the choice of the other player – j 6= i – and comparing the

frequency of the history where player i ”switches” – (0, 1, 0, 1) – with the frequency of the history

where she ”stays” – (0, 0, 1, 1). In cases 3 and 4, we compare the probability of history (0, 0, 0, 1)

for player i when the other player chooses alternative 1 at period t = 2 – (0, 0, 1, 0) – and when

this choice is at period t = 1 – (0, 1, 0, 0).

There are other values for y0, a, b, and y3 that identify linear combinations of the β parameters.

In general, with T = 3, we have that the vector (y0, a, b, y3) can take 44 = 256 values. Let CA

and CB be the matrices with dimension 256×4 such that each row contains the vector of statistics

c (A)′ and c (B)′, respectively, for a particular value of (y0, a, b, y3). Similarly, let ln PA and

ln PB be the vectors with dimension 256×1 that contain the log-probabilities lnP (A) and lnP (B),

respectively, for the different values of (y0, a, b, y3). Equation (9) together with the fact that

s (A) = s (B) imply that ln PA − ln PB = (CA − CB) β. Furthermore, matrix CA − CB is full

column rank and we can identify β as:

β =
[
(CA −CB)′ (CA −CB)

]−1 [
(CA −CB)′ (ln PA − ln PB)

]
(12)

The sample counterpart of this expression provides a root-M consistent and asymptotically normal

estimator of β. However, this estimator is not as efficient as the Conditional Maximum Likelihood

estimator that we present in section 4 below. �

2.3 Complete information and triangular strategic interactions

Now, we relax the condition of no contemporaneous strategic interactions and allow γ2 to be

different to zero: there is a contemporaneous effect of y1 on y2. We still keep the restriction γ1 = 0

– no contemporaneous effect of y2 on y1, and include the restriction β21 = 0. That is, the model is
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defined by the following best response functions:
y1t = 1 {α1 + β11 y1t−1 + β12 y2t−1 − ε1t ≥ 0}

y2t = 1 {α2 + γ2 y1t + β22 y2t−1 − ε2t ≥ 0}
(13)

This system can be interpreted as a dynamic Stackelberg game where, at every period t, player 1

is the leader and decides first, and player 2 makes his choice after knowing the current choice of

player 1.

The log-probability of the market history ỹ ≡ (y1t, y2t : t = 0, 1, .., T ) has the following structure:

lnP (ỹ|α, β) = ln pα (y10, y20) + α1 T
(1)
1 + α2 T

(1)
2 +

T∑
t=1
σα1 (y1t−1, y2t−1) + σα2 (y1t, y2t−1)

+ β11 C11 + β12 C12 + β22 C22 + γ2 T
(1,1)

(14)

with σα1(y1, y2) ≡ − ln[1+exp{α1+β11y1+β12y2}] and σα2(y1, y2) ≡ − ln[1+exp{α2+γ2y1+β22y2}].

Comparing equations (14) and (7), we can see two important differences: the term γ2 T
(1,1); and the

term
∑T

t=1σα2(y1t, y2t−1) instead of
∑T

t=1σα2(y1t−1, y2t−1). These differences have implications on

the identification of the parameters. The log-probability depends on γ2 only through the statistic

T (1,1), and this statistic is also associated with the incidental parameters – with σα1. Similarly, the

log-probability depends on β12 only through the statistic C12, but this statistic is also associated

with the incidental parameters through the term C12 [σα2(1, 1)− σα2(1, 0)− σα2(0, 1) + σα2(0, 0)].4

This implies that the parameters γ2 and β12 cannot be identified.

Similarly as for the previous model, we can rewrite the right hand side of equation (14) as

s (ỹ)′ gα + c (ỹ)′ β∗, but now the vectors of statistics s (ỹ) and c (ỹ), and the vector of identified

parameters β∗ are different. More specifically,
s (ỹ)′ = [1, y10, y20, y10y20 ; 1,y1T , y2T , y1T y2T ; T ,T

(1)
1 ,T

(1)
2 ,T (1,1) ; C12]

g′α = [ln p∗α + σ∗α ; −σ∗α ; ;
σ∗α+

(0, α1, α2,−∆σα2 + γ2)
;

∆σα2
+β12

]
c (ỹ)′ = [C11, C22]
β∗′ = [β11, β22]

(15)

where ln p∗α and σ∗α have the same definition as in section 2.2 above. For i ∈ {1, 2}, ∆σαi is the

incidental parameter σαi(1, 1)− σαi(0, 1)− σαi(1, 0) + σαi(0, 0).

4Note that
∑T
t=1σα2 (y1t, y2t−1) can be written as

[∑T
t=1(1 − y1t)(1 − y2t−1)

]
σα2(0, 0)+

[∑T
t=1y1t(1 − y2t−1)

]
σα2(1, 0)+

[∑T
t=1(1 − y1t)y2t−1

]
σα2(0, 1)+

[∑T
t=1y1ty2t−1

]
σα2(1, 1), and this expression is equal to T σα2(0, 0)+T

(1)
1

[σα2(1, 0) − σα2(0, 0)] +
[
T

(1)
2 + y20 − y2T

]
[σα2(0, 1) − σα2(0, 0)] + C12 [σα2(1, 1) − σα2(1, 0) − σα2(0, 1) + σα2(0, 0)].
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There are some fundamental differences with respect to the model without contemporaneous

strategic interactions. First, the statistic C12 and the structural parameter β12 appear in the log-

probability of a choice history through the term C12 (∆σα2 + β12). Without further restrictions

we have that the incidental parameter ∆σα2 is not zero. This implies that the parameter β12 is

not identified. Second, the statistic T (1,1) and the structural parameter γ2 appear in lnP (ỹ|α, β)

through the term T (1,1) (∆σα1 + γ2). Therefore, without further restrictions, the parameter γ2 is

not identified.

PROPOSITION 2. For the myopic, complete information, triangular (‘Stackelberg’) dynamic game

described by equation (13): (A) The vector s (ỹ) = [1, y10, y20, y10y20, y1T , y2T , y1T y2T , T , T
(1)
1 , T

(1)
2 ,

T (1,1), S12]
′ is a minimal sufficient statistic for α such that lnP (ỹ | s (ỹ) , α, β) does not depend on

α. (B) lnP (ỹ | s (ỹ) , β) = c (ỹ)′ β∗− ln(
∑

ỹ′:s(ỹ′)=s(ỹ) exp {c (ỹ′)′β∗)}) with c (ỹ) = [C11, C22]
′

and β∗ = [β11, β22]
′. (C) For T ≥ 3, there are histories ỹ such that lnP (ỹ | s (ỹ) , β) identifies

the vector of parameters of interest β∗. �

Example 2 presents pairs of histories that identify parameters β11 and β22 in this model.

EXAMPLE 2. Consider the same framework as in Example 1b: T = 3 and the pair of histories

A = {y0, a, b, y3} and B = {y0, b,a,y3}. In Example 1b, we showed that these histories have

the same value for the statistics y0, y3, and T (y1,y2). Now, in this model with a contemporaneous

effect, the sufficient statistic includes C12, so we need to impose additional conditions on histories

A and B such that C12(A) = C12(B). In the example in table 2, we have that C12(A) = C12(B) for

cases 1 and 2. Therefore, these two pairs of market histories still identify the parameters β11 and

β22, respectively, in this ‘Stackelberg’ dynamic game. We present this result in table 3. In contrast,

for case 3 we have that C12(A) = 1 and C12(B) = 0, such that this history does not identify β12. For

case 4, we have that C12(A) = C12(B) = 0, but for this case we also have that c (A) = c (B) such

that lnP (A | s, β) = lnP (B | s, β) such that this pair of histories does not identify any parameter.

�
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Table 3
Myopic Game of Complete Information

Triangular with contemporaneous effect y1 → y2
Examples of histories and identified parameters with T=3
A = {y0, a, b, y3}; B = {y0, b, a, y3} with C12(A) = C12(B)

y0 a b y3 lnP (A)− lnP (B)

Case 1:

(
0
0

) (
0
0

) (
1
0

) (
1
0

)
β11

Case 2:

(
0
0

) (
0
0

) (
0
1

) (
0
1

)
β22

As explained above, the no identification of the parameters γ2 and β12 is due to the fact that

they appear in the log-probability of a choice history only through the terms T (1,1) (∆σα1 + γ2)

and C12 (∆σα2 + β12), respectively. This feature of the model also provides conditions for the

identification of these parameters. The parameter γ2 is identified if and only if ∆σα1 is equal to

zero (or a constant) for any possible value of the incidental parameter α1. Remember that ∆σα1

is defined as σα1(1, 1) − σα1(0, 1) − σα1(1, 0) + σα1(0, 0), and σα1(y1, y2) is defined as − ln[1 +

exp {α1 + β11 y1 + β12 y2}]. Taking this into account we have that ∆σα1 = 0 if and only if β11 = 0

or/and β12 = 0. Following a similar argument, we have the parameter β12 is identified if and only

if ∆σα2 = 0 for any value of α2, and this is the case if and only if γ2 = 0 or/and β22 = 0. We

summarize these identification results in the following Proposition 3.

PROPOSITION 3. For the myopic, complete information, triangular (‘Stackelberg’) dynamic game

described by equation (13): (A) a necessary and sufficient condition for the identification of parame-

ter γ2 is that β11 = 0 or/and β12 = 0; (B) a necessary and sufficient condition for the identification

of parameter β12 is that γ2 = 0 or/and β22 = 0. �

Based on Proposition 3, there is a myopic dynamic game where all the structural parameters

are identified. This is the model with β12 = 0. That is,
y1t = 1 {α1 + β11 y1t−1 − ε1t ≥ 0}

y2t = 1 {α2 + γ2 y1t + β22 y2t−1 − ε2t ≥ 0}
(16)

In this dynamic game both players have switching costs as represented by the parameters β11 and

β22. Player 1 is a Stackelberg leader such that player 2’s past and current decisions do not have any

effect on the decision of player 1. The best response of player 2 is affected by the contemporaneous

choice of player 1.
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EXAMPLE 3. Suppose that T = 3 and consider the pair of histories A and B with:

A =

[(
0
y20

)
,

(
0
0

)
,

(
1
1

)
,

(
1
y23

)]

B =

[(
0
y20

)
,

(
0
1

)
,

(
1
0

)
,

(
1
y23

)] (17)

We first verify that the values taken by the sufficient statistics y0, y3, T
(1)
1 , T

(1)
2 , and C12 are the

same for the two histories. It is clear the initial and the final choices at t = 0 and t = 3 are the

same in the two histories. We also have that: T
(1)
1 (A) = 2 = T

(1)
1 (B); T

(1)
2 (A) = 1 + y23 = T

(1)
2 (B);

and C12(A) = 1 = C12(B). Now, for the identifying statistics C11, C22, and T (1,1) we have that:

C11(A) = 1 = C11(B); C22(A) = y23 and C22(B) = y20; and T (1,1)(A) = 1+y23 and T (1,1)(B) = y23.

Taking into account these results, we have that:

lnP (A)− lnP (B) = γ2 + (y23 − y20) β22 (18)

Therefore, when y23 − y20 = 0, the frequencies of this pair of histories identify γ2. �

Functional differencing approach. So far, we have considered identification results using a

conditional likelihood approach. Recently, Honoré and Weidner (2020) and Dobroyni, Gu and Kim

(2021) have used a functional differencing approach in the spirit of Bonhomme (2012) to prove the

identification of parameters in dynamic logit models that are not identify using a conditional like-

lihood method. We follow the same approach here, and more specifically the method in Dobroyni,

Gu and Kim (2021). We are particularly interested in the identification of parameters γ2 and β12

without the restrictions in Proposition 3. Without further restrictions, the functional differenting

approach does not provide (point) identification of the parameters γ2 and β12. However, it does

provide identification of these parameters when we restrict the fixed effects α1m and α2m to be the

same for the two players. Importantly, the conditional likelihood approach does not identify γ2 and

β12 under this additional restriction. Proposition 4 presents this result. The proof, that includes a

description of Dobroyni, Gu and Kim (2021) functional differenting approach for our model, is in

the Appendix.

PROPOSITION 4. Consider the myopic, complete information, triangular (‘Stackelberg’) dynamic

game described by equation (13) where the fixed effects of the two players are restricted to be the

same: α1m = α2m. The functional differenting approach implies moment conditions that point

identify all the structural parameters, β11, β22, β12,and γ2. �
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2.4 Incomplete information and triangular strategic interaction

Now, consider the incomplete information version of the Stackelberg dynamic game in equation

(16). That is, 
y1t = 1 {α1 + β11 y1t−1 − ε1t ≥ 0}

y2t = 1 {α2 + γ2 Λα1(y1t−1) + β22 y2t−1 − ε2t ≥ 0}
(19)

where Λα1(y1t−1) ≡ Λ (α1 + β11 y1t−1) and Λ(.) is the Logistic function. The log-probability of a

choice history is:

lnP (ỹ|α, β) = ln pα (y10, y20) + α1 T
(1)
1 + α2 T

(1)
2

+
T∑
t=1

[σα1 (y1t−1) + γ2 y2t Λα1(y1t−1) + σα2 (y1t−1, y2t−1)]

+ β11 C11 + β22 C22

(20)

with σα1 (y1) ≡ − ln[1 + exp{α1 + β11 y1}], and σα2 (y1, y2) ≡ − ln[1 + exp{α2 + γ2 Λα1(y1) + β22

y2}].

In terms of incidental parameters and sufficient statistics, this model has two main differences

with its complete information counterpart. First, the term γ2 T
(1,1) in the model with complete

information is now replaced by γ2 [Λα1(1) − Λα1(0)] C21. Since γ2 appears multiplying Λα1(1) −

Λα1(0), this structural parameter is not additively separable from the incidental parameters and it

cannot be identified. This difference with respect to the complete information model also implies

that now C21 is part of the vector of sufficient statistics. Second, the term
∑T

t=1σα2(y1t, y2t−1),

that appears in the model of complete information, is now replaced by
∑T

t=1σα2(y1t−1, y2t−1). This

implies that, in contrast to the complete information model, now T (1,1) is part of the vector of

sufficient statistics but C12 is not.

PROPOSITION 5. For the myopic, incomplete information, triangular (‘Stackelberg’) dynamic

game described by equation (19): (A) The vector s (ỹ) = [1, y10, y20, y10y20, y1T , y2T , y1T y2T , T ,

T
(1)
1 , T

(1)
2 , T (1,1), C21]

′ is a minimal sufficient statistic for α such that lnP (ỹ | s (ỹ) , α, β) does

not depend on α. (B) lnP (ỹ | s (ỹ) , β) = c (ỹ)′ β∗− ln(
∑

ỹ′:s(ỹ′)=s(ỹ) exp {c (ỹ′)′β∗)}) with c (ỹ) =

[C11, C22]
′ and β∗ = [β11, β22]

′. (C) For T ≥ 3, there are histories ỹ such that lnP (ỹ | s (ỹ) , β)

identifies the vector of parameters of interest β11 and β22. �

In Example 5, we present pairs of histories that identify parameters β11 and β22.

EXAMPLE 5. Consider the histories in Table 3. It is straightforward to verify that these two pairs

of histories still identify the parameters β11 and β22, respectively, in the model with incomplete
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information. Note that for these histories we also have that C21(A) = C21(B) such that they also

have the same value for the sufficient statistic s in Proposition 5. Therefore, for these particular

histories, the identification of the parameters β11 and β22 is robust to the assumption of either

private or common knowledge of the ε variables. �

Partial identification of γ2. Since γ2 is not point identified, we explore here the identification of

bounds for this parameter, i.e., partial identification. Let P1(y1,t−1, α1) and P2(yt−1, α) represent

the probabilities P(y1t = 1|y1,t−1, α1) and P(y2t = 1|yt−1, α1, α2), respectively. Since the first

player is the leader and its behavior does not depend on the second player, we can treat it as a

single agent dynamic logit model. For that model we know that, as soon as T ≥ 3, the average

effect ∆(1) =
∫

[P1(1, α1) − P1(0, α1)]dF (α1) is point identified, as shown in Aguirregabiria and

Carro (2020). For (y1, y2),∈ {0, 1}2, define the following average effect for player 2: ∆
(2)
y1,y2 =∫

[P2(y1, y2, α)− P2(0, 0, α)]dF (α). Under the conditions β11 ≥ 0, β22 ≥ 0, and γ2 ≤ 0, it is simple

to show that: ∆
(2)
0,1 ≥ 0, −∆

(2)
1,0 ≥ 0, ∆

(2)
1,1 −∆

(2)
1,0 ≥ 0, and ∆

(2)
0,1 −∆

(2)
1,1 ≥ 0. Now making use of the

fact that Λ(x)− Λ(y) ≤ 1
4(x− y) if x > y, we get the following inequalities:

0 ≤ ∆
(2)
0,1 ≤

1

4
β22

0 ≤ −∆
(2)
1,0 ≤ −

γ2
4

∆(1)

0 ≤ ∆
(2)
1,1 −∆

(2)
1,0 ≤

1

4
β22

0 ≤ ∆
(2)
0,1 −∆

(2)
1,1 ≤ −

γ2
4

∆(1)

Now consider choice histories C =

(
0 0 1 0
0 0 0 1

)
and D =

(
0 1 0 0
0 0 0 1

)
. We have that:

P (D)− P (C)

=

∫
p∗α(0, 0)(1− P1(0, 0, α))(1− P1(1, 0, α))P1(0, 0, α)(1− P2(0, 0, α))(P2(1, 0, α)− P2(0, 0, α))dF (α)

≥ 1

4
∆

(2)
1,0 ≥

γ2∆
(1)

16

Since we observe the left hand size and ∆(1) is is point identified, the last inequality provides

informative bounds on γ2. There are other histories that provide informative bounds on this

parameter.

PROPOSITION 6. In the myopic, incomplete information, triangular (‘Stackelberg’) dynamic

game described by equation (19), under conditions β11 ≥ 0, β22 ≥ 0, and γ2 ≤ 0, three are choice

histories that provide informative bounds for the parameter γ2 such that this parameters is partially

identified.. �
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2.5 Complete information and full contemporaneous strategic interactions

Consider the game with contemporaneous effects of y2 on y1 (i.e., γ1 6= 0) and of y1 on y2 (i.e.,

γ2 6= 0). As shown above, the identification results for the triangular model using the conditional

likelihood approach establish that β12 and β21 are not point identified (Proposition 2), and the

identification of γ2 requires either β12 = 0 or β11 = 0 (Proposition 3). Now, in this model where γ1

and γ2 are unrestricted, we eliminate the lagged strategic interactions between players such that

β12 = β21 = 0. 
y1t = 1 {α1 + γ1 y2t + β11 y1t−1 − ε1t ≥ 0}

y2t = 1 {α2 + γ2 y1t + β22 y2t−1 − ε2t ≥ 0}
(21)

Here we concentrate on the (point) identification of the switching cost parameters – β11 and β22 –

and on the partial identification of all the parameters.

This model is a dynamic panel data version of the two-player binary choice games in Bresnahan

and Reiss (1991) and Tamer (2003), among others. Relative to the models considered in previous

sections, this model has the additional complication of having multiple equilibria.

The model implies a partition of the space of the unobservables (ε1t, ε2t) such that each region

in the partition corresponds to a prediction (or multiple predictions) about players’ choices. The

form of this partition depends on the sign of the parameters γ1 and γ2. For the sake of concreteness,

here we assume that players’ decisions are strategic substitutes such that γ1 ≤ 0 and γ2 ≤ 0. Figure

1 represents the threshold values for ε1t and ε2t that define this partition. We use this figure to

describe the regions in the space of (ε1t, ε2t) associated with different outcomes (y1t, y2t), and also

to describe lower and upper bounds for the probabilities of these outcomes.

There are two vertical lines associated with the values α1 + γ1 + β11 y1t−1 and α1 + β11 y1t−1,

respectively, for ε1t. Similarly, there are two horizontal lines associated with the values α2+γ2+β22

y2t−1 and α2 + β22 y2t−1, respectively, for ε2t. These four lines divide the space of (ε1t, ε2t) into

nine quadrangles. It is convenient to label these quadrangles using the cardinal directions, i.e.,

Northwest (NW), North (N), Northeast (NE), etc.

17



Figure 1: Regions for the Complete Information Game

with Full Contemporaneous Strategic Interactions
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The outcome of the game is (y1t, y2t) = (1, 1) if and only if ε1t ≤ α1 + γ1 + β11 y1t−1 and

ε2t ≤ α2 + γ2 + β22 y2t−1 which corresponds to the Southwest (SW) quadrangle. Similarly, the

outcome of the game is (y1t, y2t) = (0, 0) if and only if ε1t > α1 + β11 y1t−1 and ε2t > α2 + β22

y2t−1 which corresponds to the Northeast (NE) quadrangle. Therefore, the model provides unique

predictions for the probabilities P((y1t, y2t) = (1, 1) | yt−1;α) and P((y1t, y2t) = (0, 0) | yt−1;α).

That is,
P (0, 0 | yt−1;α) =

1

1 + exp {α1 + β11 y1t−1}
1

1 + exp {α2 + β22 y2t−1}

P (1, 1 | yt−1;α) =
exp {α1 + β11 y1t−1 + γ1}

1 + exp {α1 + β11 y1t−1 + γ1}
exp {α2 + β22 y2t−1 + γ2}

1 + exp {α2 + β22 y2t−1 + γ2}

(22)

The quadrangle in the center of figure 1 – labeled as 0 – is associated with two possible outcomes

or equilibria of the game: (y1t, y2t) = (1, 0) and (y1t, y2t) = (0, 1). This region with multiple
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equilibria implies that the model does not have unique predictions on the probabilities P (0, 1

| yt−1;α) and P (1, 0 | yt−1;α). However, the model establishes bounds on the values of these

probabilities.

The upper bound to the probability of outcome (1, 0) is given by region up and to the left of the

blue right angle: quadrangles NW , N , W , and 0. The upper bound to the probability of outcome

(0, 1) is associated to the region down and to the right of the red right angle: quadrangles 0, E, S,

and SE. These bounds have a logit structure: they are the product of two logit probabilities:
U(0, 1|yt−1;α) ≡ 1

1 + exp {α1 + β11 y1t−1 + γ1}
exp {α2 + β22 y2t−1}

1 + exp {α2 + β22 y2t−1}

U(1, 0|yt−1;α) ≡ exp {α1 + β11 y1t−1}
1 + exp {α1 + β11 y1t−1}

1

1 + exp {α2 + β22 y2t−1 + γ2}

(23)

This property plays an important role in our identification results.

The lower bounds to the probabilities of outcome (0, 1) and (1, 0) are equal to the upper bounds

minus the probability associated to quadrangle 0 where multiple equilibria exists. Unfortunately,

these (sharp) lower bounds do not have a logit structure. Without the logit structure it is not

possible to derive sufficient statistics for α (Chamberlain, 2010). For this reason, we use non-sharp

lower bounds which have a logit structure. We consider two different lower bounds. For outcome

(0, 1), the non-sharp lower bounds are defined by the regions in the quadrangles {E, SE} and {S,

SE}. These regions imply the following (logit) lower bounds for the probability of outcome (0, 1):
L{E,SE}(0, 1|yt−1;α) ≡ 1

1 + exp {α1 + β11 y1t−1}
exp {α2 + β22 y2t−1}

1 + exp {α2 + β22 y2t−1}

L{S,SE}(0, 1|yt−1;α) ≡ 1

1 + exp {α1 + β11 y1t−1 + γ1}
exp {α2 + β22 y2t−1 + γ2}

1 + exp {α2 + β22 y2t−1 + γ2}

(24)

For outcome (1, 0), the non-sharp lower bounds are defined by the regions in quadrangles {W, NW}

and {N, NW}, respectively. They imply the following (logit) lower bounds for the probability of

outcome (1, 0):
L{W,NW}(1, 0|yt−1;α) ≡ exp {α1 + β11 y1t−1 + γ1}

1 + exp {α1 + β11 y1t−1 + γ1}
1

1 + exp {α2 + β22 y2t−1 + γ2}

L{N,NW}(1, 0|yt−1;α) ≡ exp {α1 + β11 y1t−1}
1 + exp {α1 + β11 y1t−1}

1

1 + exp {α2 + β22 y2t−1}
(25)

2.5.1 Approach using only point predictions

First – before we present our bounds approach to derive identification results – we consider here a

simpler but more restrictive approach that tries to avoid the problem of multiple equilibria. We use
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only market histories with y1t = y2t at every period t. For these histories, the model provides point

predictions for the probability of a choice history. Unfortunately, we show here that this approach

cannot provide point identification of the structural parameters.

Consider a market history ỹ ≡ (y1t, y2t : t = 0, 1, .., T ) and suppose – for the moment – that the

model provides unique predictions about the possible outcomes such that: P(y1t, y2t | yt−1;α) =

Λ([2y1t − 1] [α1 + γ1 y2t + β11 y1t−1]) Λ([2y2t − 1] [α2 + γ2 y1t + β22 y2t−1]). Under this condition,

the model implies the following log-probability:

lnP (ỹ | α, β) = ln pα (y10, y20) + α1 T
(1)
1 + α2 T

(1)
2 +

∑T
t=1σα1 (y1t−1, y2t) + σα2 (y1t, y2t−1)

+ β11 C11 + β22 C22 + (γ1 + γ2) T
(1,1)

(26)

with σα1 (y1t−1, y2t) ≡ − ln[1+exp{α1+β11y1t−1+γ1y2t}] and σα2 (y1t, y2t−1) ≡ − ln[1+ exp{α2+γ2

y1t + β22 y2t−1}]. Representing
∑T

t=1σα1 (y1t−1, y2t) + σα2 (y1t, y2t−1) in terms of the statistics T

and C, we can write this log-probability as:

lnP (ỹ | α, β) = ln pα (y10, y20) + T [σα1 (0, 0) + σα2 (0, 0)]

+ T
(1)
1 [α1 + ∆σα1 (1, 0) + ∆σα2 (1, 0)] + T

(1)
2 [α2 + ∆σα1 (0, 1) + ∆σα2 (0, 1)]

+ (y10 − y1T ) ∆σα1 (1, 0) + (y20 − y2T ) ∆σα2 (0, 1) + C21 ∆2σα1 + C12 ∆2σα2

+ β11 C11 + β22 C22 + (γ1 + γ2) T
(1,1)

(27)

where – for i = 1, 2 – ∆σαi (1, 0) ≡ σαi (1, 0) − σαi (0, 0); ∆σαi (0, 1) ≡ σαi (0, 1) − σαi (0, 0); and

∆2σαi ≡ σαi (1, 1)− σαi (1, 0)− σαi (0, 1) + σαi (0, 0).

Now, we take into account that the model provides unique predictions only for market histories

with y1t = y2t = yt for every period t ≥ 1. This implies the following restrictions on the statistics:

(a) T
(1)
1 = T

(1)
2 = T (1,1); (b) C11 = C21 =

∑T
t=2ytyt−1+y1 y10; and (c) C22 = C12 =

∑T
t=2ytyt−1+y1

y20. Plugging these restrictions into the equation for the log-probability, we obtain this expression:

lnP (ỹ | α, β) = ln pα (y10, y20) + T [σα1 (0, 0) + σα2 (0, 0)]

+ T (1,1) [α1 + α2 + ∆σα1 (1, 0) + ∆σα2 (1, 0) + ∆σα1 (0, 1) + ∆σα2 (0, 1) + γ1 + γ2]

+ (y10 − y1T ) ∆σα1 (1, 0) + (y20 − y2T ) ∆σα2 (0, 1)

+ C11

[
β11 + ∆2σα1

]
+ C22

[
β22 + ∆2σα2

]
(28)

Equation (28) shows that, without further restrictions, neither the parameters γ1 and γ2 nor
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the switching costs β11 and β22 can be identified. The parameters γ1 and γ2 are only related to

the statistic T (1,1), and this statistic is also associated with the incidental parameters. Similarly,

the parameters β11 and β22 are only related to the statistics C11 and C22, respectively, but these

statistics are also associated with the incidental parameters.

Equation (28) shows also that a necessary and sufficient condition for the identification of the

switching cost βii: ∆2σαi should be equal to zero for any possible value of the incidental parameter

αi. Using its definition, we have that ∆2σαi is equal to:

− ln[1 + exp {αi + βii + γi}] + ln[1 + exp {αi + βii}] + ln[1 + exp {αi + γi}]− ln[1 + exp {αi}]

(29)

It is clear that ∆2σαi = 0 for every value of αi if and only if γi = 0 or βii = 0. In this section we

consider a model without restrictions on γ1 and γ2. Therefore, we are ruling out the restriction

γi = 0. Of course, the restriction βii = 0 trivially identifies βii.

PROPOSITION 7. Consider the myopic dynamic game with contemporaneous effects – with γ1 6= 0

and γ2 6= 0 – described by equation (21). If we use data only from market histories with y1t = y2t

for every t ≥ 1 (such that the model has unique predictions), the structural parameters of the model

cannot be point identified using a conditional likelihood approach. �

2.5.2 Conditional likelihood - Bounds approach

The following Lemma 1 presents a property that plays a key role in our sufficient statistics - bounds

approach.

LEMMA 1. Suppose that the log-probability of a market history has lower and upper bounds with the

following structure: the lower bound is lnPL (ỹ | α, β) = sL (ỹ)′ gα+ cL (ỹ)′ β and the upper bound

is lnPU (ỹ | α, β) = sU (ỹ)′ gα + cU (ỹ)′ β, where sL (ỹ), sU (ỹ), cL (ỹ), and cU (ỹ) are vectors of

statistics, and gα is a vector of incidental parameters. Given this structure, the logarithm of the

probability of a market history ỹ (unconditional on α) has the following bounds:

h (sL (ỹ)) + cL (ỹ)′ β ≤ lnP (ỹ) ≤ h (sU (ỹ)) + cU (ỹ)′ β (30)

where h (s) is a function (described in the Appendix) that depends on the vector of statistics s and

on the probability distribution of the incidental parameters α. Given two different histories, say A

and B.

(i) If sL (A) = sU (B) and cL (A) 6= cU (B), we have that:

[cL (A)− cU (B)]′ β ≤ lnP (A)− lnP (B) (31)
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(ii) If sU (A) = sL (B) and cU (A) 6= cL (B), we have that:

lnP (A)− lnP (B) ≤ [cU (A)− cL (B)]′ β (32)

These inequalities imply partial identification of some structural parameters. �

Lemma 1 does not imply that sL (ỹ) or sU (ỹ) – or even the union of these two vectors of statistics

– are sufficient statistics for the incidental parameters in the probability P (ỹ | α, β). In general,

this is not true for this model. However, the vectors sL (ỹ) and sU (ỹ) are sufficient statistics for

the the incidental parameters in the lower and in the upper bounds of this probability, respectively.

This property – together with the condition that there are histories with sL (A) = sU (B) and with

cL (A) 6= cU (B) – allow us to obtain partial identification of the structural parameters.

The rest of this section describes the derivation of the expressions for the bounds, lnPL (ỹ | α, β)

= sL (ỹ)′ gα+ cL (ỹ)′ β and lnPU (ỹ | α, β) = sU (ỹ)′ gα + cU (ỹ)′ β, and our (set) identification

results.

Given a market history ỹ, we can construct a lower bound and an upper bound for the log-

probability of this history lnP (ỹ | α, β). These bounds are:
lnPL (ỹ | α, β) ≡ ln pα (y10, y20) +

∑T
t=1 lnL(yt|yt−1;α, β)

lnPU (ỹ | α, β) ≡ ln pα (y10, y20) +
∑T

t=1 lnU(yt|yt−1;α, β)

(33)

For outcomes (0, 0) and (1, 1), the upper bounds and the lower bounds are the same and they are

the probabilities in equation (22). For outcomes (0, 1) and (1, 0), the upper bounds U(yt|yt−1;α, β)

are the ones in equation (23), and the lower bounds L(yt|yt−1;α, β) come from equations (24) and

(25).

Lemma 2 presents bounds for the log-probability of a market history in our model, shows that

these bounds have the structure in Lemma 1, and provides the specific form of the vectors of

statistics sL, sU , cU , and cU .

LEMMA 2. For the myopic complete information dynamic game with contemporaneous effects in

equation (21), the log-probability of a market history has lower bounds lnPL{E,W} (ỹ | α, β) and
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lnPL{S,N} (ỹ | α, β) and upper bound lnPU (ỹ | α, β) which have the following expressions:

lnPL{E,W} (ỹ | α, β) = s1 (ỹ)′ g1
α +

[
T
(1)
1 , T

(1)
1 , C11, C12

]
g2
α

+ C11 β11 + C22 β22 + T
(1)
1 γ1 + T (1,1) γ2

lnPL{S,N} (ỹ | α, β) = s1 (ỹ)′ g1
α +

[
T
(1)
2 , T

(1)
2 , C21, C22

]
g2
α

+ C11 β11 + C22 β22 + T (1,1) γ1 + T
(1)
2 γ2

lnPU (ỹ | α, β) = s1 (ỹ)′ g1
α +

[
T
(1)
2 , T

(1)
1 , C21, C12

]
g2
α

+ C11 β11 + C22 β22 + T (1,1) [γ1 + γ2]

(34)

where g1
α and g2

α are vectors of incidental parameters which are defined in the Appendix, and the

vector of statistics s1 (ỹ) consists of T, y10, y20, y1T , y2T , T
(1)
1 , and T

(1)
2 . �

Combining the general identification approach in Lemma 1 with the specific expressions for the

bounds in Lemma 2, we can obtain the following identification results in Proposition 8.

PROPOSITION 8. Consider the myopic complete information dynamic game with contemporane-

ous effects in equation (21). Define the vector of statistics s1 (ỹ) ≡ [T, y10, y20, y1T , y2T , T
(1)
1 ,

T
(1)
2 ]. Let A and B be two market histories such that s1(A) = s1(B) and T

(1)
1 = T

(1)
2 . Let

∆(A,B, β11, β22) be lnP (A)− lnP (B)− [C11(A)− C11(B)] β11− [C22(A)− C22(B)] β22.

(i) If C12(A) = C12(B) and C11(A) = C21(B), then:

∆(A,B, β11, β22) ≥
[
T
(1)
1 (A)− T (1,1)(B)

]
γ1 +

[
T (1,1)(A)− T (1,1)(B)

]
γ2 (35)

(ii) If C12(A) = C12(B) and C21(A) = C11(B), then:

∆(A,B, β11, β22) ≤
[
T (1,1)(A)− T (1)

1 (B)
]
γ1 +

[
T (1,1)(A)− T (1,1)(B)

]
γ2 (36)

(iii) If C21(A) = C21(B) and C22(A) = C12(B), then:

∆(A,B, β11, β22) ≥
[
T (1,1)(A)− T (1,1)(B)

]
γ1 +

[
T
(1)
2 (A)− T (1,1)(B)

]
γ2 (37)

(iv) If C21(A) = C21(B) and C12(A) = C22(B), then:

∆(A,B, β11, β22) ≤
[
T (1,1)(A)− T (1,1)(B)

]
γ1 +

[
T (1,1)(A)− T (1)

2 (B)
]
γ2 (38)

Based on these inequalities, we can find pairs of market histories – A and B – that set identify the

parameters β11, β22, γ1, and γ2. �

The following examples present specific pairs of market histories that point identify the switching

cost parameters and set identify the strategic interaction parameters.
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EXAMPLE 8. Consider the pair of histories A = [(0, 0), (0, 0), (1, 1), (1, 1)] and B = [(0, 0),

(0, 1), (1, 0), (1, 1)]. These histories have the same value for the vector of statistics s1 (ỹ) = [T,

y10, y20, y1T , y2T , T
(1)
1 , T

(1)
2 ]. These histories also satisfy the condition T

(1)
1 = T

(1)
2 . Note that

C11(A)−C11(B) = 0 and C22(A)−C22(B) = 1 such that ∆ (A,B, β11, β22) = lnP (A)− lnP (B)−

β22. We now check conditions (i) to (iv) in Proposition 8.

Condition (i) holds because C12(A) = C12(B) = 1 and C11(A) = C21(B) = 1. It implies:

lnP (A)− lnP (B) ≥ β22 + γ1 + γ2 (39)

Condition (ii) holds because C12(A) = C12(B) = 1 and C21(A) = C11(B) = 1. It implies:

lnP (A)− lnP (B) ≤ β22 + γ1 (40)

Condition (iii) holds because C21(A) = C21(B) = 1 and C22(A) = C12(B) = 1. It implies:

lnP (A)− lnP (B) ≥ β22 + γ1 + γ2 (41)

Note that – for this example – this inequality is equivalent to the one provided by condition (i).

Condition (iv) does not hold because C12(A) = 1 6= 0 = C22(B) . �

We can also consider the mirror version of the pair of histories in Example 8. That is, consider

A = [(0, 0), (0, 0), (1, 1), (1, 1)] and B = [(0, 0), (1, 0), (0, 1), (1, 1)]. It is simple to show that this

pair of histories imply the inequalities lnP (A)− lnP (B) ≥ β11 + γ1 + γ2 and lnP (A)− lnP (B)

≤ β11 + γ2

These two examples may leave the impression that conditions (i) and (iii) generate always the

same lower bound. This is not the case. For instance, consider the pairs of histories A = [(0, 0),

(0, 0), (0, 1), (1, 0)] and B = [(0, 0), (0, 1), (0, 0), (1, 0)]. For these histories, we have that C12(A) = 1

6= 0 = C12(B), and this implies that both condition (i) and condition (ii) fail. But condition (iii)

and (iv) are satisfied and imply informative bounds on the parameters.
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2.6 Incomplete information and full contemporaneous effects

We now consider the myopic incomplete information game where with γ1 6= 0 and γ2 6= 0. The

Bayesian Nash equilibrium (BNE) at period t can be described as a pair of probabilities, P1 and

P2, that solve the system of equations:
P1 = Λ (α1 + γ1 P2 + β11 y1t−1)

P2 = Λ (α2 + γ2 P1 + β22 y2t−1)
(42)

Then, given a solution (P1(yt−1;α), P2(yt−1;α)), the model implies the outcome probabilities

P((y1t, y2t) = (j, k) | yt−1;α) = P1(yt−1;α)j P2(yt−1;α)k, for any j, k ∈ {0, 1}.

There are two issues with these outcome probabilities. First, in general, the model does not

have a unique BNE. There may be multiple pairs of probabilities that solve the system of equations

in (42) such that the model does not have a unique prediction for its outcome. Second, even under

uniqueness, the equilibrium probabilities do not have a logit structure.

We deal with these issues using a bounds approach. However, the way in which we derive

bounds for this incomplete information game is different than with complete information. We use

the followings Lemmas 3 to 5.

LEMMA 3. Let Λ(x) be the Logistic function. Then, then Λ(x) − Λ(y) ≤ 1
4(x − y) if x > y and

Λ(x)− Λ(y) ≥ 1
4(x− y) if x < y. �

Proof. By the mean value theorem, Λ(x) − Λ(y) = (x − y) Λ′(ξ), for ξ ∈ [y, x]. For the Logistic

function, Λ′(x) = Λ(x)(1−Λ(x)). Since Λ(x) ∈ [0, 1], we have Λ′(x) ≤ 1/4 for all x ∈ R. Therefore,

if x > y, we have the first inequality, and if if x < y we have the second inequality. �

LEMMA 4. Suppose that the following conditions hold: (i) non-negative switching costs, β11 ≥ 0

and β22 ≥ 0; (ii) negative strategic interactions, γ1 ≤ 0 and γ2 ≤ 0; and (iii) upper bound on

strategic effects, γ1γ2 ≤ 16. Under these conditions, the following inequalities hold for any for any

(α1, α2) ∈ R2:

P1(1, 0, α)− P1(0, 0, α) ≥ 0; P1(0, 1, α)− P1(0, 0, α) ≤ 0

P2(1, 0, α)− P2(0, 0, α) ≤ 0; P2(0, 1, α)− P2(0, 0, α) ≥ 0

Proof. See the Appendix. �

LEMMA 5. For player i, let ∆
(i)
y1,y2 be the average effect

∫
[Pi(y1, y2, α)− Pi(0, 0, α)]dF (α). Under
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conditions (i) to (iii) in Lemma 4, the following inequality restrictions hold:

∆
(2)
1,0 ≥

γ2
4

∆
(1)
1,0

∆
(1)
1,0 ≤

γ1
4

∆
(2)
1,0 +

β11
4

∆
(1)
0,1 ≥

γ1
4

∆
(2)
0,1

∆
(2)
0,1 ≤

γ2
4

∆
(1)
0,1 +

β22
4

In turn, these inequalities imply the following:

0 ≥ ∆
(2)
1,0 ≥

γ2β11/16

1− γ1γ2/16

0 ≤ ∆
(1)
1,0 ≤

β11/4

1− γ1γ2/16

0 ≥ ∆
(1)
0,1 ≥

γ1β22/16

1− γ1γ2/16

0 ≤ ∆
(2)
0,1 ≤

β22/4

1− γ1γ2/16

Proof of Lemma 5. See the Appendix. �

PROPOSITION 9. In the myopic, incomplete information game with full interactions, under

conditions β11 ≥ 0, β22 ≥ 0, γ1 ≤ 0, γ2 ≤ 0, and γ1γ2 ≤ 16, there are market histories that provide

informative bounds on the structural parameters. All the parameters are partially identified. �

Proof of Proposition 9. To get bounds for the parameters (γ1, γ2, β11, β22), we now link the

probability of the market histories to the average effects ∆
(1)
1,0, ∆

(1)
0,1, ∆

(2)
1,0, and ∆

(2)
0,1. Consider the

histories A =

(
0 1 0 1
0 0 0 0

)
, B =

(
0 0 1 1
0 0 0 0

)
, C =

(
0 0 1 0
0 0 0 1

)
, and D =

(
0 1 0 0
0 0 0 1

)
.

We can see that

P(A) =

∫
pα(0, 0)P1((0, 0))2(1− P1((1, 0))(1− P2((0, 0))2(1− P2((1, 0)))dF (α)

and

P(B) =

∫
pα(0, 0)P1((0, 0))(1− P1((0, 0)))P1((1, 0))(1− P2((0, 0)))2(1− P2((1, 0)))dF (α)

and therefore, under conditions (i) to (iii) in Lemma 4, we have:

P(B)− P(A) =

∫
pα(0, 0)(1− P2((0, 0)))2(1− P2((1, 0)))P1((0, 0))

[
P1((1, 0))− P1((0, 0))

]
dF (α)

≤
∫ [

P1((1, 0))− P1((0, 0))
]
dF (α)

= ∆
(1)
1,0 ≤

β11/4

1− γ1γ2/16
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where the first inequality holds since {pα(0, 0), P2((0, 0)), P2((1, 0)), P1((0, 0))} ∈ [0, 1]4.

We also have:

P(C)− P(D) =

∫
pα(0, 0)P1((0, 0))(1− P1((0, 0)))(1− P1((1, 0)))(1− P2((0, 0)))

[
P2((1, 0))− P2((0, 0))

]
dF (α)

≥ 1

4

∫ [
P2(1, 0)− P2(0, 0)

]
dF (α)

=
1

4
∆

(2)
1,0 ≥

1

4

γ2β11/16

1− γ1γ2/16

where the first inequality holds because we know P1((0, 0))(1 − P1((0, 0))) ≤ 1/4 and all other

probabilities are in [0, 1].

Similarly, consider the histories E =

(
0 0 0 0
0 1 0 1

)
, F =

(
0 0 0 0
0 0 1 1

)
, G =

(
0 0 0 1
0 0 1 0

)
,

and H =

(
0 0 0 1
0 1 0 0

)
. We then have

P(F )− P(E) =

∫
pα(0, 0)(1− P1((0, 0)))2(1− P1((0, 1)))P2((0, 0))

[
P2((0, 1))− P2((0, 0))

]
dF (α)

≤
∫ [

P2((0, 1))− P2((0, 0))
]
dF (α)

= ∆
(2)
0,1 ≤

β22/4

1− γ1γ2/16

and

P(G)− P(H) =

∫
pα(0, 0)(1− P1((0, 0)))(1− P2((0, 0)))P2((0, 0))(1− P2((0, 1)))

[
P1((0, 1))− P1((0, 0))

]
dF (α)

≥ 1

4

∫ [
P1((0, 1))− P1((0, 0))

]
dF (α)

=
1

4
∆

(1)
0,1π

a
01 ≥

1

4

γ1β22/16

1− γ1γ2/16
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3 Identification of dynamic games with forward-looking players

3.1 Framework

Every period t, the two players choose simultaneously their binary actions in market m – y1mt ∈

{0, 1} and y2mt ∈ {0, 1} – to maximize their respective expected and discounted intertemporal

payoffs: Et [
∑∞

s=0δ
s
im Uim,t+s(yim,t+s, yjm,t+s)], where δim ∈ (0, 1) is the discount factor of player

i in market m, and Uimt(yi, yj) is the one-period payoff. The one-period payoff has the same

structure as in equation (1), such that the utility difference ∆Uimt ≡ Uimt(1, yjmt)− Uimt(0, yjmt)

can be represented as in (2). The unobservable variables – εimt(0) and εimt(1) – have the same

interpretation and the same properties as in the myopic model.

We distinguish two types of models: complete information games where all the variables in-

cluding ε’s are common knowledge to all the firms; and incomplete information games where the

εi’s are private information of player i but unknown to the other players in the game. Note that

the fixed effects are assumed common knowledge in both cases.

Following most of the empirical literature on dynamic discrete games, we assume that players’

decisions come from a Markov Perfect Equilibrium (MPE). This implies that players’ strategies

depend only on payoff relevant state variables. At any period t, the action of player i is a function

of the variables known by this player that affects her payoff, or the payoff of other players, at

period t. For the incomplete information game, this means that yimt = σim(εimt,ymt−1), where

σi(.) represents the strategy function of player i. For the complete information game, the strategy

function of a player depends also on the current ε variable of the other player, such that yimt =

σim(εimt, εjmt,ymt−1).

A player takes the strategies of the other players as given and chooses her strategy to maximize

her own intertemporal value. This best response function is the solution to a single-agent dynamic

programming problem.

A MPE in the game of complete information is a solution in (y1, y2) to the system of best

response conditions:
y1mt = 1 {α1m + γ1 y2mt + β11 y1mt−1 + β12 y2mt−1 + ṽ1m(y2mt)− ε1mt ≥ 0}

y2mt = 1 {α2m + γ2 y1mt + β21 y1mt−1 + β22 y2mt−1 + ṽ2m(y1mt)− ε2mt ≥ 0}
(43)

where ṽim (yjmt) ≡ vim (1, yjmt) − vim (0, yjmt) is the difference between the continuation value

of choosing alternative 1 and the continuation value of choosing alternative 0. In the game of

complete information, these continuation values depend on the current decision of the other player

– yjmt – which is known to player i at period t. Importantly – for our identification results –
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these continuation values do not depend on the state variables at period t. Given players’ choices

át period t – which are common knowledge – their choices at period t − 1 do not contain any

additional information that is relevant to predict future payoffs at periods t+ 1 and beyond.

In the game of incomplete information, variable εimt becomes private information of player i.

This implies that a player does not know with centainty the current decision of the other player

– she knows only a probability distribution of that decision. A MPE in the game of incomplete

information is a solution in the choice probabilities functions (P1m(ymt−1), P2m(ymt−1)) to the

system of equations:
P1mt = Λ (α1m + β11 y1mt−1 + β12 y2mt−1 + [1− P2mt] ṽ1m(0) + P2mt ṽ1m(1))

P2mt = Λ (α2m + β21 y1mt−1 + β22 y2mt−1 + [1− P1mt] ṽ2m(0) + P1mt ṽ2m(1))
(44)

where, for i ∈ {1, 2}, Pimt ≡ Pimt(ymt−1) = P [yimt = 1 | αm, y1mt−1, y2mt−1]; and ṽim(yjmt) is still

the difference between the continuation values of alternatives 1 and 0.

It is important to distinguish two manifestations of the problem of multiple equilibria. In

general, given the primitives, the model may have multiple strategy functions – σ1m(.) and σ2m(.)

– that satisfy the system of best response restrictions characterizing the equilibrium of the model.

This is a general description of phenomenom of multiple equilibria, and it may happen with complete

or with incomplete information. There is a more specific manifestation of multiplicity of equilibria

that appears only in games of completete information. Even if we fix the continuation value

functions – v1m(.) and v2m(.) – and the value of the state variables – ymt−1, ε1mt, and ε2mt – there

are regions in the space of (ε1mt, ε2mt) with multiple predictions about the best response values of

(y1mt, y2mt). This is the same type problem with multiple equilibria that appears in static games

of complete information – Bresnahan and Reiss (1990) or Tamer (2003).

The sampling framework is the same as for the myopic model. For notational simplicity, we omit

the market subindex m for the rest of this section. We use the vector ỹ ≡ (y1t, y2t : t = 0, 1, .., T )

to represent a market history.

3.2 Forward-looking, complete information, triangular dynamic game

Consider the complete information game in equation (43). It is convenient to represent this model

as follows:

yit = 1 {α̃i + βii yi,t−1 + γ̃iα yjt − εit ≥ 0} (45)

where α̃i ≡ αi+ ṽiα (0), and γ̃iα ≡ γi+ ṽiα (1)− ṽiα (0). Given this representation, it should be clear

that it is not possible to point identify parameters γ1 and γ2 because they always appear together
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with the incidental parameters ṽiα (1)− ṽiα (0).

Our purpose here is to study: (1) the point identification of the switching cost parameters β11

and β22; (2) the partial identification of parameters γ1 and γ2; and (3) whether there are triangular

models – in the spirit of the models we studied in section 2.3 but now with forward-looking players

– where the γ parameters are point identified.

We start here with a forward-looking, complete information, triangular dynamic game. Consider

a version of the model with β12 = γ1 = 0. Under these restrictions, the player 1’s payoff does not

depend on past, present, or future decisions of player 2. Therefore, the decision problem for player

1 is a single-agent problem, and it can represented as:

y1t = 1
{
ε1t ≤ α1 + β11 y1t−1 + ṽ1α

}
(46)

This identification of this forward-looking dynamic logit model – with fixed effects unobserved

heterogeneity – has been established in Aguirregabiria, Gu, and Luo (2019). In this model: the

incidental parameter is α1 + ṽ1α; the vector of sufficient statistics is s (ỹ) = [y10, y1T , T
(1)
1 ]; and the

structural parameter β11 is identified from the maximization of the condtional likelihood function.

We now establish the point identification of parameters β11 and β22. The best response of player

2 in this triangular model is:

y2t = 1
{
ε2t ≤ α̃2 + β21 y1,t−1 + β22 y2,t−1 + γ̃2α y1t

}
(47)

where α̃2 ≡ α2 + ṽ2α (0), and γ̃2α ≡ γ2 + ṽ2α (1) − ṽ2α (0). Given equations (46) and (47), the

log-probability of the market history ỹ ≡ (y1t, y2t : t = 0, 1, .., T ) has the following structure:

lnP (ỹ|α, β) = ln pα (y10, y20) + α1 T
(1)
1 + α2 T

(1)
2 + γ̃2α T

(1,1) +
T∑
t=1
σα1 (y1t−1) + σα2 (y1t, y2t−1)

+ β11 C11 + β22 C22

(48)

where σα1(y1) ≡ − ln[1 + exp{α1 + β11 y1}] and σα2(y1, y2) ≡ − ln[1 + exp{α2 + γ̃2α y1 + β22 y2}].

We can rewrite this equation for the log-probability of a market history as lnP (ỹ | α, β) as s (ỹ)′

gα + c (ỹ)′ β∗, with
s (ỹ)′ = [1, y10, y20, y10y20 ; 1, y1T , y2T , y1T y2T ; T , T

(1)
1 , T

(1)
2 , T (1,1) ; C12]

c (ỹ)′ = [C11, C22]

β∗′ = [β11, β22]
(49)
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PROPOSITION 10. For the forward-looking, complete information, triangular (‘Stackelberg’) dy-

namic game described by equations (46) and (47): (A) The vector s (ỹ) = [1, y10, y20, y10y20,

y1T , y2T , y1T y2T , T , T
(1)
1 , T

(1)
2 , T (1,1), C12]

′ is a minimal sufficient statistic for α such that

lnP (ỹ | u (ỹ) , α, β) does not depend on α. (B) lnP (ỹ | c (ỹ) , β) = s (ỹ)′ β∗− ln(
∑

ỹ′:s(ỹ′)=s(ỹ) exp {c(ỹ′)′β∗})

with c (ỹ) = [C11, C22]
′ and β∗ = [β11, β22]

′. (C) For T ≥ 3, there are histories ỹ such that

lnP (ỹ | s (ỹ) , β) identifies the vector of parameters of interest β∗. �

EXAMPLE 10. The same histories in Example 3 that – in the myopic, complete information,

triangular model – identify parameters β11 and β22, still identify these parameters in the forward-

looking version of the model. More specifically: the pair of histories A = {(0, 0), (0, 0), (1, 0),

(1, 0)} and B = {(0, 0), (1, 0), (0, 0), (1, 0)} identifies β11; and the pair of histories A = {(0, 0),

(0, 0), (0, 1), (0, 1)} and B = {(0, 0), (0, 1), (0, 0), (0, 1)} identifies β22. �

3.3 Forward-looking, complete information: bounds approach

We consider now the forward-looking dynamic game where we do not restrict the parameters γ1 or

γ2 to be zero. 
y1t = 1

{
ε1t ≤ α̃1 + β11 y1,t−1 + γ̃1α y2t

}
y2t = 1

{
ε2t ≤ α̃2 + β22 y2,t−1 + γ̃2α y1t

} (50)

where α̃i ≡ αi + ṽiα (0), and γ̃iα ≡ γi + ṽiα (1)− ṽiα (0).

The model has a similar structure as the myopic. The main difference is that now the random

variables (γ̃1α, γ̃2α) replace the parameters (γ1, γ2). Therefore, the expressions of the lower and

upper bounds for the log-probability of a market history are very similar to the ones in Lemma 2

for the myopic model, but replacing (γ1, γ2) with (γ̃1α, γ̃2α). Though this different is coneptually

simple, it has substantial implications on the identification of the γ parameters. More specifically,

we cannot point identify the switching cost parameters. Proposition 11 establsihes that these

parameters are partially identified.

PROPOSITION 11. Consider the forward-looking complete information dynamic game with con-

temporaneous effects in equation (50). Under conditions β11 ≥ 0, β22 ≥ 0, γ̃1α ≤ 0, and γ̃2α ≤ 0,

there are market histories that provide informative bounds on the parameters β11 and β22. These

parameters are partially identified. �
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Proof of Proposition 11. Denote the following terms:

σα1(y1t−1, y2t) = − ln{1 + exp(α̃1 + β11y1t−1 + γ̃1αy2t)}

σα2(y1t, y2t−1) = − ln{1 + exp(α̃2 + β22y2t−1 + γ̃2αy1t}

∆σα1(1, 0) = σα1(1, 0)− σα1(0, 0)

∆σα1(0, 1) = σα1(0, 1)− σα1(0, 0)

∆σα2(1, 0) = σα2(1, 0)− σα2(0, 0)

∆σα2(0, 1) = σα2(0, 1)− σα2(0, 0)

∆2σα1 = σα1(1, 1)− σα1(1, 0)− σα1(0, 1) + σα1(0, 0)

∆2σα2 = σα2(1, 1)− σα2(1, 0)− σα2(0, 1) + σα2(0, 0)

Under the conditions of Proposition 11, we have (i) ∆σα1(1, 0) ≤ 0, (ii) ∆σα1(0, 1) ≥ 0, (iii)

∆σα2(1, 0) ≥ 0 and ∆σα2(0, 1) ≤ 0, (iv) ∆2σα1 ≥ 0 and, (v) ∆2σα2 ≥ 0. For each choice history ỹ,

we have the following lower and upper bound:

lnPU (ỹ|α, β) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1,1), T (1,1)]′g2α + [T
(1)
2 , T

(1)
1 , C21, C12]g

3
α

+ C11β11 + C22β22

lnPL{E,W}(ỹ|α, β) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1)
1 , T (1,1)]′g2α + [T

(1)
1 , T

(1)
1 , C11, C12]g

3
α

+ C11β11 + C22β22

lnPL{S,N}(ỹ|α, β) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1,1), T
(1)
2 ]′g2α + [T

(1)
2 , T

(1)
2 , C21, C22]g

3
α

+ C11β11 + C22β22

lnPL{E,N}(ỹ|α, β) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1,1), T (1,1)]′g2α

+ [T (1,1), T (1,1), R
(1,1)
1 , R

(1,1)
2 ]g3α

+ C11β11 + C22β22

lnPL{S,W}(ỹ|α, β) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1)
1 , T

(1)
2 ]′g2α

+ [T
(1)
1 + T

(1)
2 − T (1,1), T

(1)
1 + T

(1)
2 − T (1,1), C11 + C21 −R(1,1)

1 , C12 + C22 −R(1,1)
2 ]g3α

+ C11β11 + C22β22

where s1(ỹ) = [T, T
(1)
1 , T

(1)
2 ], g1α = [σα1(0, 0) + σα2(0, 0), α1 + ∆σα1(1, 0), α2 + ∆σα2(0, 1)]′, g2α =

[∆σα1(1, 0),∆σα2(0, 1), γ̃1α, γ̃2α]′, and g3α = [∆σα1(0, 1),∆σα2(1, 0),∆2σα1 ,∆
2σα2 ]′

The grouping of the gjα with j = {1, 2, 3} terms are such that terms in g1α can be any sign for

{α1, α2} ∈ R2. Terms in g2α are all negative. And all terms in g3α are positive.
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We first present bounds constructed using the differences of the logrithm of the probability of

a pair of choice history that satisfy certain conditions, i.e. ln P (A)
P (B) = lnP (A) − lnP (B). We then

generalize to bounds constructed from
∑
λ∈SU P (λ)∑
λ′∈SL P (λ′) , where the set SU and SL are some set of choice

histories (not necessarily a singleton) that satisfy certain conditions. We focus on upper bound,

because the result of lower bound from such sequences are providing symmetric information (i.e.

the lower bound of P (A)
P (B) is providing equivalent information from the upper bound of P (B)

P (A) ).

For a pair of choice histroies A and B, define

∆(A,B, β11, β22) = lnP (A)− lnP (B)− [C11(A)− C11(B)]β11 − [C22(A)− C22(B)]β22

Define the statistics s1(ỹ) = [T, T
(1)
1 , T

(1)
2 ]

[1] Using upper bound and L{E,W}:

∆(A,B, β11, β22) ≤ 0

provided the following conditions hold: (i) y10(A) = y20(B), (ii) y20(A)−y20(B), (iii) s1(A) = s1(B),

(iv) element-wise, [y10(A)−y1T (A), y20(A)−y2T (A), T (1,1)(A), T (1,1)(A)]−[y10(B)−y1T (B), y20(B)−

y2T (B), T
(1)
1 (B), T (1,1)(B)] ≥ 0, (v) element-wise, [T

(1)
2 (A), T

(1)
1 (A), S21(A), S12(A)] − [T

(1)
1 (B),

T
(1)
1 (B), S11(B), S12(B)] ≤ 0.

[2] Using upper bound and L{S,N}:

∆(A,B, β11, β22) ≤ 0

provided the following conditions hold: (i) y10(A) = y20(B), (ii) y20(A)−y20(B), (iii) s1(A) = s1(B),

(iv) element-wise, [y10(A)−y1T (A), y20(A)−y2T (A), T (1,1)(A), T (1,1)(A)]−[y10(B)−y1T (B), y20(B)−

y2T (B), T (1,1)(B), T
(1)
2 (B)] ≥ 0, (v) element-wise, [T

(1)
2 (A), T

(1)
1 (A), C21(A), C12(A)] − [T

(1)
2 (B),

T
(1)
2 (B), C21(B), C22(B)] ≤ 0.

[3] Using upper bound and L{E,N}:

∆(A,B, β11, β22) ≤ 0

provided the following conditions hold: (i) y10(A) = y20(B), (ii) y20(A)−y20(B), (iii) s1(A) = s1(B),

(iv) element-wise, [y10(A)−y1T (A), y20(A)−y2T (A), T (1,1)(A), T (1,1)(A)]−[y10(B)−y1T (B), y20(B)−

y2T (B), T (1,1)(B), T (1,1)(B)] ≥ 0, (v) element-wise, [T
(1)
2 (A), T

(1)
1 (A), C21(A), C12(A)]−[T (1,1)(B), T (1,1)(B), R

(1,1)
1 (B), R

(1,1)
2 (B)] ≤

0.

[4] Using upper bound and L{S,W}:

∆(A,B, β11, β22) ≤ 0
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provided the following conditions hold: (i) y10(A) = y20(B), (ii) y20(A)−y20(B), (iii) s1(A) = s1(B),

(iv) element-wise, [y10(A)−y1T (A), y20(A)−y2T (A), T (1,1)(A), T (1,1)(A)]−[y10(B)−y1T (B), y20(B)−

y2T (B), T
(1)
1 (B), T

(1)
2 (B)] ≥ 0, (v) element-wise, [T

(1)
2 (A), T

(1)
1 (A), S21(A), S12(A)] − [T

(1)
1 (B) +

T
(1)
2 (B)−T (1,1)(B), T

(1)
1 (B)+T

(1)
2 (B)−T (1,1)(B), C11(B)+C21(B)−R(1,1)

1 (B), C12(B)+C22(B)−

R
(1,1)
2 (B)] ≤ 0.

For each combination of the upper and lower bound, the conditions (i) and (ii) imposed on A

and B makes sure to cancel out lnPα(y10, y20), and condition (iii) makes sure to cancel the terms

in front of g1α that we can not determine its sign and condition. Condition (iv) takes advantage

of the fact that all elements in g2α ≤ 0 under the conditions of Proposition 11 those terms can be

replaced by 0 in the upper bound of lnP (A) − lnP (B). Finally, condition (v) takes advantage of

the fact that all elements in g3α ≥ 0 under the conditions of Proposition 11such that those terms

can be replaced by 0 in the upper bound of lnP (A)− lnP (B). �

EXAMPLE 11. A = [(0, 1), (1, 1), (0, 0), (0, 0)] and B = [(0, 1), (1, 0), (0, 1), (0, 0)]. For this pair,

we have T
(1)
1 (A) = T

(1)
1 (B) = T

(1)
2 (A) = T

(1)
2 (B) = 1, T (1,1)(B) = 0, T (1,1)(A) = 1, C11(A) =

C11(B) = 0, C22(B) = 0 6= 1 = C22(A), and C12(A) = C12(B) = 1 and C21(B) = 1 and C21(A) = 0.

Therefore lnP (A)− lnP (B) ≤ β22
Other example. A = [(1, 0), (1, 1), (0, 0), (0, 0)] and B = [(1, 0), (0, 1), (1, 0), (0, 0)]. For this

pair, we have T
(1)
1 (A) = T

(1)
1 (B) = T

(1)
2 (A) = T

(1)
2 (B) = 1, T (1,1)(B) = 0 and T (1,1)(A) = 1,

C11(B) = 0 6= 1 = C11(A), C22(A) = C22(B) = 0, C12(B) = 1, C12(A) = 0, C21(A) = 1 = C21(B),

which leads to lnP (A)− lnP (B) ≤ β11. �

3.4 Identification of dynamic games of incomplete information

Consider the two-player binary choice model of incomplete information. We can represent the best

response decisions of the players as follows:
y1t = 1 {α1 + β11 y1,t−1 + β12 y2,t−1 + ṽ1α (y1,t−1, y2,t−1)− ε1t ≥ 0}

y2t = 1 {α2 + β21 y1,t−1 + β22 y2,t−1 + ṽ2α (y1,t−1, y2,t−1)− ε2t ≥ 0}
(51)

where ṽiα (y1,t−1, y2,t−1) ≡ viα (1; y1,t−1, y2,t−1)− viα (0; y1,t−1, y2,t−1). The continuation value func-

tion ṽiα (y1,t−1, y2,t−1) depends on (y1,t−1, y2,t−1) because player i does not know the current choice

of the other player j. She has to predict the choice of the other player, but this prediction (the

equilibrium choice probability) depends on (y1,t−1, y2,t−1) and on the incidental parameters.

Equation (51) already shows that the structural parameters β cannot be identified in this

model. In the log-probability of a market history, these statistics are associated with the statistics
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Sij ≡
∑T

t=1yit yjt−1 for i, j ∈ {1, 2}. However, in the log-probability of any market history, these

statistics Sij also appear associated with the incidental parameters through the terms
∑T

t=1yit

ṽiα (y1,t−1, y2,t−1). Therefore, without further restrictions, the structural parameters β are not

identified in this model.

We consider a ‘Stackelberg’ version of this model where every period t, player 1 decides first

and then player 2 makes her decision given that she knows the decision of player 1.

4 Estimation and inference

TBW

5 Empirical application

TBW

6 Conclusions

TBW
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APPENDIX

Proof of Lemma 1. Given the structure for the lower bound – lnPL (ỹ | α, β) = s′Lgα+ c′Lβ –

and for the upper bound – lnPU (ỹ | α, β) = s′Ugα + c′Uβ – we have that:

exp
{
s′Lgα + c′Lβ

}
≤ P (ỹ | α) ≤ exp

{
s′Ugα + c′Uβ

}
(A.1.1)

Integrating the inequalities in (A.1.1) over the distribution of α we have that the inequalities still

hold and they take the following form:

[∫
exp {s′Lgα} f(α) dα

]
exp {c′Lβ} ≤ P (ỹ) ≤

[∫
exp {s′Ugα} f(α) dα

]
exp {c′Uβ} (A.1.2)

Define h (s) as ln
[∫

exp {s′gα} f(α) dα
]
. Then, we have that:

h (sL) + c′Lβ ≤ lnP (ỹ) ≤ h (sU ) + c′Uβ (A.1.3)

Proof of Lemma 2 (Complete Information). For the derivations below, we use the following

definitions: σα1(y1t−1, y2t) ≡ − ln[1 + exp{α1 + β11 y1t−1 + γ1y2t}] and σα2(y1t, y2t−1) ≡ − ln[1 +

exp{α2 + β22 y2t−1 + γ2y1t}], and

s1 (ỹ)′ g1
α ≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(0, 1)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

(A.1)

where ∆σα1(1, 0) ≡ σα1(1, 0)− σα1(0, 0); and ∆σα2(0, 1) ≡ σα2(0, 1)− σα2(0, 0).

We also define the vector of incidental parameters:

g2
α ≡

[
∆σα1(0, 1), ∆σα2(1, 0), ∆2σα1, ∆2σα2

]′
(A.2)

where ∆σα1(0, 1) ≡ σα1(0, 1) − σα1(0, 0); ∆σα2(1, 0) ≡ σα2(1, 0) − σα2(0, 0); ∆2σα1 ≡ σα1(1, 1)−

σα1(1, 0)− σα1(0, 1)+ σα1(0, 0); and ∆2σα2 ≡ σα2(1, 1)− σα2(1, 0)− σα2(0, 1)+ σα2(0, 0).

And the statistics R
(1,1)
1 ≡

∑T
t=1 y1t−1 y1t y2t and R

(1,1)
2 ≡

∑T
t=1 y2t−1 y1t y2t.

(a) Lower Bound lnPL{E,W} (ỹ | α, β). To obtain this lower bound, we use the bounds L{E,SE}(0, 1|yt−1;α) ≡

[1 − Λ(α1 + β11 y1t−1)] Λ(α2 + β22 y2t−1) and L{W,NW}(1, 0|yt−1;α) ≡ Λ(α1 + β11 y1t−1 + γ1)
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[1− Λ(α2 + β22 y2t−1 + γ2)] for the choice probabilities. Then,

lnP (ỹ | α, β) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β11 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β11 y1t−1)] + ln Λ (α2 + β22 y2t−1))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β11 y1t−1 + γ1) + ln [1− Λ (α2 + β22 y2t−1 + γ2)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β11 y1t−1 + γ1) + ln Λ (α2 + β22 y2t−1 + γ2))

(A.3)

Using the definitions σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α, β) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 0) + σα2(0, y2t−1) + α2 + β22 y2t−1]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β11 y1t−1 + γ1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β11 y1t−1 + γ1 + α2 + β22 y2t−1 + γ2]

(A.4)

Grouping terms, we have:

lnP (ỹ | α, β) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

y2t [α2 + β22 y2t−1]

+
T∑
t=1

y1t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β11 y1t−1 + γ1]

+
T∑
t=1

y1ty2t [γ2]

(A.5)

Using the definitions of the statistics T
(1)
1 , T

(1)
2 ,T (1,1), C11, and C12, we have the following expression

for the lower bound lnPL{E,W} (ỹ | α, β):

lnP (ỹ | α, β) ≥ lnPL{E,W} (ỹ | α, β)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]
+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+ T
(1)
1 ∆σα1(0, 1) + T

(1)
1 ∆σα2(1, 0)

+ C11 ∆2σα1 + C12 ∆2σα2

+ C11 β11 + C22 β22 + T
(1)
1 γ1 + T (1,1) γ2

(A.6)
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Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPL{E,W} (ỹ | α, β) = s1 (ỹ)′ g1
α +

[
T
(1)
1 , T

(1)
1 , C11, C12

]
g2
α

+ C11 β11 + C22 β22 + T
(1)
1 γ1 + T (1,1) γ2

(A.7)

(b) Lower Bound lnPL{S,N} (ỹ | α, β). To obtain this lower bound, we use the bounds L{S,SE}(0, 1|yt−1;α) ≡

[1− Λ(α1 + β11 y1t−1 + γ1)] Λ(α2 + β22 y2t−1 + γ2) and L{N,NW}(1, 0|yt−1;α) ≡ Λ(α1 + β11 y1t−1)

[1− Λ(α2 + β22 y2t−1)]. Then,

lnP (ỹ | α, β) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β11 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β11 y1t−1 + γ1)] + ln Λ (α2 + β22 y2t−1 + γ2))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β11 y1t−1) + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β11 y1t−1 + γ1) + ln Λ (α2 + β22 y2t−1 + γ2))

(A.8)

Using the definitions of σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α, β) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α2 + β22 y2t−1 + γ2]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1) + α1 + β11 y1t−1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β11 y1t−1 + γ1 + α2 + β22 y2t−1 + γ2]

A.9

Grouping terms, we have:

lnP (ỹ | α, β) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

y1t [α1 + β11 y1t−1]

+
T∑
t=1

y2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α2 + β22 y2t−1 + γ2]

+
T∑
t=1

y1ty2t [γ1]

(A.10)

Using the definitions of the statistics T
(1)
1 , T

(1)
2 ,T (1,1), C11, and C12, we have the following expression
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for the lower bound lnPL{S,N} (ỹ | α, β):

lnP (ỹ | α, β) ≥ lnPL{S,N} (ỹ | α, β)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]
+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+ T
(1)
2 [∆σα1(0, 1) + ∆σα2(1, 0)]

+ C21 ∆2σα1 + C22 ∆2σα2

+ C11 β11 + C22 β22 + T (1,1) γ1 + T
(1)
2 γ2

(A.11)

Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPL{S,N} (ỹ | α, β) = s1 (ỹ)′ g1
α +

[
T
(1)
2 , T

(1)
2 , C21, C22

]
g2
α

+ C11 β11 + C22 β22 + T (1,1) γ1 + T
(1)
2 γ2

(A.12)

(c) Lower Bound lnPL{E,N} (ỹ | α, β). To obtain this lower bound, we use the bounds L{E,SE}(0, 1|yt−1;α) ≡

[1−Λ(α1+β11 y1t−1)] Λ(α2+β22 y2t−1) and L{N,NW}(1, 0|yt−1;α) ≡ Λ(α1+β11 y1t−1) [1−Λ(α2+β22

y2t−1)] for the choice probabilities. Then,

lnP (ỹ | α, β) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β11 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β11 y1t−1)] + ln Λ (α2 + β22 y2t−1))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β11 y1t−1) + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β11 y1t−1 + γ1) + ln Λ (α2 + β22 y2t−1 + γ2))

(A.13)

Using the definitions of σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α, β) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 0) + σα2(0, y2t−1) + α2 + β22 y2t−1]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1) + α1 + β11 y1t−1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β11 y1t−1 + γ1 + α2 + β22 y2t−1 + γ2]

(A.14)
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Grouping terms, we have:

lnP (ỹ | α, β) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1ty2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

y2t [α2 + β22 y2t−1]

+
T∑
t=1

y1t [α1 + β11 y1t−1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + γ1 + γ2]

(A.15)

Using the definitions of the statistics T
(1)
1 , T

(1)
2 ,T (1,1), C11, and C12, we have the following expression

for the lower bound lnPL{E,N} (ỹ | α, β):

lnP (ỹ | α, β) ≥ lnPL{E,N} (ỹ | α, β)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]
+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+ T (1,1) [∆σα1(0, 1) + ∆σα2(1, 0)]

+ R
(1,1)
1 ∆2σα1 +R

(1,1)
2 ∆2σα2

+ C11 β11 + C22 β22 + T (1,1) [γ1 + γ2]

(A.16)

Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPL{E,N} (ỹ | α, β) = s1 (ỹ)′ g1
α +

[
T (1,1), T (1,1), R

(1,1)
1 , R

(1,1)
2

]
g2
α

+ C11 β11 + C22 β22 + T (1,1) [γ1 + γ2]
(A.17)

(d) Lower Bound lnPL{S,W} (ỹ | α, β). To obtain this lower bound, we use the bounds L{S,SE}(0, 1|yt−1;α) ≡

[1−Λ(α1+β11 y1t−1+γ1)] Λ(α2+β22 y2t−1+γ2) and L{W,NW}(1, 0|yt−1;α) ≡ Λ(α1+β11 y1t−1+γ1)

[1− Λ(α2 + β22 y2t−1 + γ2)] for the choice probabilities. Then,

lnP (ỹ | α, β) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β11 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β11 y1t−1 + γ1)] + ln Λ (α2 + β22 y2t−1 + γ2))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β11 y1t−1 + γ1) + ln [1− Λ (α2 + β22 y2t−1 + γ2)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β11 y1t−1 + γ1) + ln Λ (α2 + β22 y2t−1 + γ2))

(A.18)
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Using the definitions of σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α, β) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α2 + β22 y2t−1 + γ2]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β11 y1t−1 + γ1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β11 y1t−1 + γ1 + α2 + β22 y2t−1 + γ2]

(A.19)

Grouping terms, we have:

lnP (ỹ | α, β) ≥ ln pα (y10, y20)

+
T∑
t=1

[σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

y2t [α2 + β22 y2t−1 + γ2]

+
T∑
t=1

y1t [α1 + β11 y1t−1 + γ1]

+
T∑
t=1

[y1t + y2t − y1ty2t] [σα1(y1t−1, 1)− σα1(y1t−1, 0) + σα2(1, y2t−1)− σα2(0, y2t−1)]

(A.20)

Using the definitions of the statistics T
(1)
1 , T

(1)
2 ,T (1,1), C11, and C12, we have the following expression

for the lower bound lnPL{S,W} (ỹ | α, β):

lnP (ỹ | α, β) ≥ lnPL{S,W} (ỹ | α, β)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]
+ (y10 − y1T ) [σα1(1, 0)− σα1(0, 0)] + (y20 − y2T ) [σα2(0, 1)− σα2(0, 0)]

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+
[
T
(1)
1 + T

(1)
2 − T (1,1)

]
[∆σα1(0, 1) + ∆σα2(1, 0)]

+
[
C11 + C21 −R(1,1)

1

]
∆2σα1 +

[
C12 + C22 −R(1,1)

2

]
∆2σα2

+ C11 β11 + C22 β22 + T
(1)
1 γ1 + T

(1)
2 γ2

(A.21)

Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPL{S,W} (ỹ | α, β) = s1 (ỹ)′ g1
α

+
[
T
(1)
1 + T

(1)
2 − T (1,1), T

(1)
1 + T

(1)
2 − T (1,1), C11 + C21 −R(1,1)

1 , C12 + C22 −R(1,1)
2

]
g2
α

+ C11 β11 + C22 β22 + T
(1)
1 γ1 + T

(1)
2 γ2

(A.22)

(e) Upper Bound lnPU (ỹ | α, β). For the upper bounds, we use the bounds for the choice prob-

abilities U(0, 1|yt−1;α) ≡ [1− Λ (α1 + β11 y1t−1 + γ1)] Λ (α2 + β22 y2t−1) and U(1, 0|yt−1;α) ≡
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Λ (α1 + β11 y1t−1) [1− Λ (α2 + β22 y2t−1 + γ2)]. Then,

lnP (ỹ | α, β) ≤ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β11 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β11 y1t−1 + γ1)] + ln Λ (α2 + β22 y2t−1))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β11 y1t−1) + ln [1− Λ (α2 + β22 y2t−1 + γ2)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β11 y1t−1 + γ1) + ln Λ (α2 + β22 y2t−1 + γ2))

(A.23)

Using the definitions of σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α, β) ≤ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 1) + σα2(0, y2t−1) + α2 + β22 y2t−1]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 0) + σα2(1, y2t−1) + α1 + β11 y1t−1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β11 y1t−1 + γ1 + α2 + β22 y2t−1 + γ2]

(A.24)

Grouping terms, we have:

lnP (ỹ | α, β) ≤ ln pα (y10, y20)

+
T∑
t=1

(1− y2t) σα1(y1t−1, 0) + (1− y1t) σα2(0, y2t−1)

+
T∑
t=1

y2t σα1(y1t−1, 1) + y2t [α2 + β22 y2t−1]

+
T∑
t=1

y1t σα2(1, y2t−1) + y1t [α1 + β11 y1t−1]

+
T∑
t=1

y1ty2t [γ1 + γ2]

(A.25)

Using the definitions of the statistics T
(1)
1 , T

(1)
2 ,T (1,1), C11, and C12, we have the following expression

for the upper bound lnPU (ỹ | α, β):

lnP (ỹ | α, β) ≤ lnPU (ỹ | α, β)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]
+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+ T
(1)
2 ∆σα1(0, 1) + T

(1)
1 ∆σα2(1, 0)

+ C21 ∆2σα1 + C12 ∆2σα2
+ C11 β11 + C22 β22 + T (1,1) [γ1 + γ2]

(A.26)
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Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPU (ỹ | α, β) = s1 (ỹ)′ g1
α +

[
T
(1)
2 , T

(1)
1 , C21, C12

]
g2
α

+ C11 β11 + C22 β22 + T (1,1) [γ1 + γ2]
(A.27)

Proof of Proposition 4. Consider the myopic, complete information, Stackelberg model where

we assume there is only market level unobserved heterogeneity, i.e. α1 = α2. Consider the case

y0 = {y10, y20} = {0, 0} and T = 2, such that we have 16 choice histories. The choice probabilities

conditional on the market level unobserved heterogeneity can be represented as

{y11, y21} {y12, y22} P (y)

1 {0, 0} {0, 0} ( 1
1+A)4

2 {0, 1} {0, 0} 1
1+A

A
1+A

1
1+AB12

1
1+AB22

3 {1, 0} {0, 0} A
1+A

1
1+A

1
1+AB11

1
1+A

4 {1, 1} {0, 0} A
1+A

AC
1+AC

1
AB11B12

1
AB22

5 {0, 0} {0, 1} ( 1
1+A)3 A

1+A

6 {0, 1} {0, 1} 1
1+A

A
1+A

1
1+AB12

AB22
1+AB22

7 {1, 0} {0, 1} A
1+A

1
1+AC

1
1+AB11

A
1+A

8 {1, 1} {0, 1} A
1+A

AC
1+AC

1
1+AB11B12

AB22
1+AB22

9 {0, 0} {1, 0} 1
1+A

1
1+A

A
1+A

1
1+AC

10 {0, 1} {1, 0} 1
1+A

A
1+A

AB12
1+AB12

1
1+ACB22

11 {1, 0} {1, 0} A
1+A

1
1+AC

AB11
1+AB11

1
1+A

12 {1, 1} {1, 0} A
1+A

AC
1+AC

AB11B12
1+AB11B12

1
ACB22

13 {0, 0} {1, 1} 1
1+A

1
1+A

A
1+A

AC
1+AC

14 {0, 1} {1, 1} 1
1+A

A
1+A

AB12
1+AB12

ACB22
1+ACB22

15 {1, 0} {1, 1} A
1+A

1
1+AC

AB11
1+AB11

AC
1+AC

16 {1, 1} {1, 1} A
1+A

AC
1+AC

AB11B12
1+AB11B12

ACB22
1+ACB22

where A = exp(α), B11 = exp(β11), B12 = exp(β12), B22 = exp(β22) and C = exp(γ).
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Denote g(α, θ) = (1+A)4(1+AC)2(1+AB11)(1+AB12)(1+AB22)(1+AB11B12)(1+ACB22). We

can verify that the function g(α, θ) is such that P (y|α, θ)g(α, θ) becomes a polynomial function of

A with its coefficient being polynomials of (B11, B12, B22, C). Also for any α ∈ R, 1/g(α, θ) ∈ (0, 1],

this implies that

P (y|θ, y0) =

∫
P (y|α, θ, y0)dQ(α|y0) =

∫
P (y|α, θ, y0)g(α|θ)dQ̄(α|θ, y0)

where Q is the distribution of the market level fixed effect and dQ̄(α|θ, y0) = 1
g(α,θ)dQ(α|y0).

Q̄(α|θ, y0) is a positive Borel measure on the support [0,∞). Q̄ is not a probability measure, but it

can be made into a probability measure by dividing
∫
dQ̄(α|θ, y0) since 1/g(α, θ) is finite everywhere

on the support of α, this integral exists and is finite. Some calculation shows that in particular, we

can write

p(y|θ) = G(θ)mA

where G(θ) is a 16 × 12 matrix with its elements only involving {B11, B12, B22, C} and mA is a

vector of length 12 and mA =
∫ (

1 A A2 . . . A11
)′
dQ̄(α|θ), that is, the power moments of the

measure Q̄. Moment conditions for θ by finding a vector v ∈ R16, allowed to depends on θ such

that

v′G(θ) = 0

These collection of v is nothing but elements in the left null space of the matrix G(θ), hence we

can just take all elements in a basis that spans the left null space of G(θ). In our specific case here

with T = 2, the rank of G(θ) is 4, hence the dimension of the left null space of G(θ) is 4, therefore

we expect to find 4 linearly independent moment conditions for θ. In particular, two of them take

the form:

−B11P7 + P11 = 0

− CP3 −B11CP7 + CP9 + P13 = 0

Clearly these two moment conditions identified γ2 as well as β11. We have two more moment

conditions for the identification of β12 and β22, which takes the form

B22(C − 1)

B22 − C
(P3 − P2)−B22P4

+
B12C −B22C +B2

22 −B12B22C

B22(B22 − C)
P6

+
B11B22(C − 1)

B22 − C
P7 −B11B12P8 + P10 + P14 = 0
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and

B11B12(C − 1)2

C(B22 − C)(B11B12 −B22C)(B22 − 1)
(P3 − P2)−

B11B12(C − 1)

B22C2 −B11B12C
P4

− B11B12(B12C −B22C −B3
22C +B2

22 +B2
22C

2 − 2B12B22C +B12B
2
22C)

B2
22C(B22 − C)(B11B12 −B22C)(B22 − 1)

P6

+
B2

11B12(C − 1)2

C(B22 − C)(B11B12 −B22C)(B22 − 1)
P7

− B11B12

B22C
P8 +

B11(B22C − 1)(B12 −B22C)

B22C(B11B12 −B22C)(B22 − 1)
P10 + P12 = 0

Proof of Lemma 4. Consider the equilibrium model defined by the system of equations:
P1 = Λ (a1 + γ1 P2)

P2 = Λ (a2 + γ2 P1)
(52)

An equilibrium in our model for a value of (y1,t−1, y2,t−1) ∈ {0, 1}2 is equivalent to an equilibrium of

model (52) for a value of the intercepts (a1, a2) with a1 ∈ {α1, α1 +β1} and a2 ∈ {α2, α2 +β2}. Let

me use P ∗1 (a1, a2) and P ∗2 (a1, a2) to represent equilibrium probabilities in model (52) given value

(a1, a2) for the intercept parameters. There is an obvious relationship between the equilibrium

probabilities using the representation {P1(y1,t−1, y2,t−1;α1, α2), P2(y1,t−1, y2,t−1;α1, α2)} and using

{P ∗1 (a1, a2), P
∗
2 (a1, a2)}. That is:
{P1(0, 0;α1, α2), P2(0, 0;α1, α2)} = {P ∗1 (α1, α2), P

∗
2 (α1, α2)}

{P1(1, 0;α1, α2), P2(1, 0;α1, α2)} = {P ∗1 (α1 + β1, α2), P
∗
2 (α1 + β1, α2)}

{P1(0, 1;α1, α2), P2(0, 1;α1, α2)} = {P ∗1 (α1, α2 + β2), P
∗
2 (α1, α2 + β2)}

(53)

Accordingly, we have that the following statement:

sign{P1(1, 0;α1, α2)− P1(0, 0;α1, α2)} = sign{P ∗1 (α1 + β1, α2)− P ∗1 (α1, α2)} (54)

Similarly, we also have the following statements:

sign{P1(0, 1;α1, α2)− P1(0, 0;α1, α2)} = sign{P ∗1 (α1, α2 + β2)− P ∗1 (α1, α2)}
sign{P2(1, 0;α1, α2)− P2(0, 0;α1, α2)} = sign{P ∗2 (α1 + β1, α2)− P ∗2 (α1, α2)}
sign{P2(0, 1;α1, α2)− P2(0, 0;α1, α2)} = sign{P ∗2 (α1, α2 + β2)− P ∗2 (α1, α2)}

(55)

In model (52), we can consider that (a1, a2) can take any value in the Euclidean space R2. Given
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the continuous differentiability of function Λ, the following equivalence statements should be clear:

{
P ∗1 (α1 + β1, α2)− P ∗1 (α1, α2) ≥ 0

for any (α1, α2) ∈ R2

}
⇔


∂P ∗1 (a1, a2)

∂a1
sign{β1} ≥ 0

for any (a1, a2) ∈ R2

{
P ∗1 (α1, α2 + β2)− P ∗1 (α1, α2) ≤ 0

for any (α1, α2) ∈ R2

}
⇔


∂P ∗1 (a1, a2)

∂a2
sign{β2} ≤ 0

for any (a1, a2) ∈ R2

{
P ∗2 (α1 + β1, α2)− P ∗2 (α1, α2) ≤ 0

for any (α1, α2) ∈ R2

}
⇔


∂P ∗2 (a1, a2)

∂a1
sign{β1} ≤ 0

for any (a1, a2) ∈ R2

{
P ∗2 (α1, α2 + β2)− P ∗2 (α1, α2) ≥ 0

for any (α1, α2) ∈ R2

}
⇔


∂P ∗2 (a1, a2)

∂a2
sign{β2} ≥ 0

for any (a1, a2) ∈ R2



(56)

To obtain an expression for the derivative
∂P ∗1 (a1, a2)

∂a1
in terms of primitives of the model, we

differentiate the system of equations (52) with respect to a1. We get:
∂P ∗1
∂a1

= Λ′1

[
1 + γ1

∂P ∗2
∂a1

]
∂P ∗2
∂a1

= Λ′2

[
γ2

∂P ∗1
∂a1

] (57)

where Λ′1 and Λ′2 are the derivatives of the logistic function evaluated at (a1 + γ1 P
∗
2 ) and (a2 + γ2 P

∗
2 ),

respectively. Solving this system of linear equations in (∂P ∗1 /∂a1, ∂P
∗
2 /∂a1) we obtain the following

solution: 
∂P ∗1
∂a1

=
Λ′1

1− Λ′1 Λ′2 γ1γ2

∂P ∗2
∂a1

=
Λ′1 Λ′2 γ2

1− Λ′1 Λ′2 γ1γ2

(58)

Given that Λ′1 > 0 and Λ′2 > 0, we have that:
sign

{
∂P ∗1
∂a1

}
= sign {1− Λ′1 Λ′2 γ1γ2}

sign

{
∂P ∗2
∂a1

}
= sign {1− Λ′1 Λ′2 γ1γ2} sign {γ2}

(59)

Similarly, we can differentiate the system of equations (52) with respect to a2, solve the system of

linear equations in (∂P ∗1 /∂a2, ∂P
∗
2 /∂a2), and obtain the following conditions.

sign

{
∂P ∗2
∂a2

}
= sign {1− Λ′1 Λ′2 γ1γ2}

sign

{
∂P ∗1
∂a2

}
= sign {1− Λ′1 Λ′2 γ1γ2} sign {γ1}

(60)
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Plugging the results in (59) and (60) into the conditions in (56), we have that:{
P ∗1 (α1 + β1, α2)− P ∗1 (α1, α2) ≥ 0

for any (α1, α2) ∈ R2

}
⇔

{
sign {1− Λ′1 Λ′2 γ1γ2} sign{β1} ≥ 0

for any (a1, a2) ∈ R2

}
{
P ∗1 (α1, α2 + β2)− P ∗1 (α1, α2) ≤ 0

for any (α1, α2) ∈ R2

}
⇔

{
sign {1− Λ′1 Λ′2 γ1γ2} sign {γ1} sign{β2} ≤ 0

for any (a1, a2) ∈ R2

}
{
P ∗2 (α1 + β1, α2)− P ∗2 (α1, α2) ≤ 0

for any (α1, α2) ∈ R2

}
⇔

{
sign {1− Λ′1 Λ′2 γ1γ2} sign {γ2} sign{β1} ≤ 0

for any (a1, a2) ∈ R2

}
{
P ∗2 (α1, α2 + β2)− P ∗2 (α1, α2) ≥ 0

for any (α1, α2) ∈ R2

}
⇔

{
sign {1− Λ′1 Λ′2 γ1γ2} sign{β2} ≥ 0

for any (a1, a2) ∈ R2

}
(61)

Suppose that β1 ≥ 0, β2 ≥ 0, γ1 ≤ 0, and γ2 ≤ 0. Then, a necessary and sufficient condition to

obtain the inequalities in (61) is:

Λ′1 Λ′2 γ1γ2 ≤ 1 for any (a1, a2) ∈ R2 (62)

Or equivalently,

sup
(a1,a2)∈R2

{
Λ′1(a1, a2) Λ′2(a1, a2)

}
γ1γ2 ≤ 1 (63)

For the logistic function, we know that Λ′1(a1, a2) ≤ 1/4 and Λ′2(a1, a2) ≤ 1/4 for any (a1, a2) ∈ R2.

We also know that there are values (a1, a2) ∈ R2 such that the upper bound 1/4 is reach. Therefore,

we have that sup(a1,a2)∈R2 {Λ′1(a1, a2) Λ′2(a1, a2)} = 1/4 ∗ 1/4 = 1/16. Therefore, if β1 ≥ 0, β2 ≥ 0,

γ1 ≤ 0, and γ2 ≤ 0, a necessary and sufficient condition to obtain the inequalities in (61) is:

γ1 γ2 ≤ 16 (64)

This condition also implies equilibrium uniqueness. �

Proof of Lemma 5. Under the conditions in Lemma 4, we can sign the average effects ∆
(i)
y1,y2 .

More specifically,

∆
(1)
1,0 ≥ 0; ∆

(2)
1,0 ≤ 0; ∆

(1)
0,1 ≤ 0; ∆

(2)
0,1 ≥ 0

We show the first two inequalities, and the last two can be shown similarly. Giben that P2(1, 0, α)−

P2(0, 0, α) ≤ 0 for all α ∈ R2 and P2(1, 0)− P2(0, 0) = Λ(α2 + γ2P1(1, 0))− Λ(α2 + γ2P1(0, 0)), we

know that α2 + γ2P1(1, 0) ≤ α2 + γ2P1(0, 0). Applying Lemma 3, we get

∆
(2)
1,0 ≥

1

4
γ2∆

(1)
1,0

Similarly, since P1(1, 0, α) − P1(0, 0, α) ≥ 0 for all α ∈ R2, and P1(1, 0) − P1(0, 0) = Λ(α1 +

γ1P2(1, 0) + β11) − Λ(α1 + γ1P2(0, 0)), we know that α1 + γ1P2(1, 0) + β11 ≥ α1 + γ1P2(0, 0).
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Applying Lemma 3, we have

∆
(1)
1,0 ≤

1

4
{γ1∆(2)

1,0 + β11}

We can draw two inequalities in the second quadrant of R2. The intersection of the areas, illustrated

in Figure 1, provides bound for ∆
(1)
1,0 and ∆

(2)
1,0.

Figure 1: The x-axis is πb10 and the y-axis is πa10. The red area portraits the first inequality and
the blue area portraits the second inequality diaplayed in Lemma 5.

We then deduce that we have the following inequalities.

0 ≥ ∆
(2)
1,0 ≥

γ2β11/16

1− γ1γ2/16

0 ≤ ∆
(1)
1,0 ≤

β11/4

1− γ1γ2/16

0 ≥ ∆
(1)
0,1 ≥

γ1β22/16

1− γ1γ2/16

0 ≤ ∆
(2)
0,1 ≤

β22/4

1− γ1γ2/16
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