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DIFFUSION OF COVID-19 IN SOCIAL AND PRODUCTION NETWORKS: SIMULATION
EVIDENCE FROM A DYNAMIC MODEL

VICTOR AGUIRREGABIRIA a , JIAYING GUb , YAO LUO c AND PEDRO MIRAd

This paper presents a dynamic model to evaluate economic and public health ef-
fects of the diffusion of COVID-19. Our framework combines a SIR epidemiological
model of virus diffusion with a dynamic game of network production and social inter-
actions. The economy comprises three types of geographic locations: homes, work-
places, and consumption places. Each individual has her own set of locations where
she develops her life. The combination of these sets for all the individuals deter-
mines the economy’s production and social network. Every day, individuals choose
to work and consume either outside (with physical interaction with other people)
or remotely (from home, without physical interactions). Working (and consuming)
outside is more productive and generates stronger complementarities (positive ex-
ternality). However, in the presence of a virus, working outside facilitates infection
and the diffusion of the virus (negative externality). Individuals are forward-looking.
We calibrate the model and implement numerical experiments to evaluate the health
and economic impact of several counterfactual public policies: subsidies for work-
ing at home; testing policies; herd immunity; and changes in the network structure.
These policies generate substantial differences in the propagation of the virus and its
economic impact.
JEL Codes: C57, C73, L14, L23, I18.
Keywords: Covid-19, Virus Diffusion, Dynamics, Production and Social Networks,
Production Externalities, Public Health.

1. INTRODUCTION

The COVID-19 pandemic has generated important challenges and uncertainties in our
societies. The academic economics profession has responded with notorious engagement
to these challenges. We, as many other academics, believe that COVID-19 is a unique
opportunity to make progress on some research issues which are important for the eco-
nomics of pandemics. There is much uncertainty about the evolution of the pandemic, its
economic effects, and the effectiveness of different public policies. There are also uncer-
tainties in the academic profession – more than usual – about which models can be more
useful for policy analysis in this new scenario. This paper is one of the many attempts by
economists to provide a structural model of dynamic decision-making that could poten-
tially be useful for policy analysis.

In this paper, we present a framework that combines an epidemiological model of
COVID-19 diffusion with a dynamic game of network production and social interactions.
The model emphasizes several aspects typically absent from epidemiological models that
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Diffusion of Covid-19 in Social and Production Networks

are work horses in economic models: (i) individuals make choices to maximize their own
welfare and respond to incentives affecting this welfare; (ii) individuals interact with each
other and their choices and contributions to economic and social outcomes depend on the
behavior of coworkers, suppliers, clients, family members, and friends. The production
(social) system is a network. Importantly, production and social networks also determine
physical links between individuals that can facilitate infection. Network links can gener-
ate positive spillover effects in production and consumption, but also negative externalities
because of infections. This tradeoff between the positive and negative externalities from
network links plays a fundamental role in the diffusion of a virus and its economic im-
pact. In this paper, we develop a dynamic model that emphasizes the relationship between
the production/social network in an economy and the diffusion of COVID-19 and its eco-
nomic impact. The model can be used to evaluate the impact that different public policies
have on the propagation of a virus and its economic effects.1

Our model incorporates the following features.
Production and social network. The economy comprises a set of geographic locations

and a set of individuals. We distinguish three types of locations: homes, workplaces, and
consumption places. Each individual has her own set of locations where she develops her
life: her home(s), workplaces, and consumption places. The combination of these sets for
all the individuals determines the economy’s production and social network. The structure
of the network can be determined using data on individuals’ mobility in the absence of
COVID-19.

Endogenous individuals’ choices. Every day, individuals choose to work and consume
either outside (with physical interaction with other people) or remotely (from home, with-
out physical interactions). Working (consuming) outside is more productive and generates
complementarities. Therefore, in the absence of a virus, working outside generates a pos-
itive externality.

Epidemiological model. In the presence of a virus transmitted through physical contact,
working or consuming outside facilitates the diffusion of the virus (negative externality).
The epidemiological part of our model incorporates substantial extensions with respect
to standard SIR models. First, the production/social network is an important component
of our epidemiological model. Second, the probability of infection is endogenous as it
depends on working and consumption decisions of the own individual and of other people
in her production and social network.2 This implies that the probability of infection varies
across regions in the network. The model provides a landscape of this probability over a
city, and this landscape evolves endogenously.

Information structure and testing. A special feature of COVID-19 is that asymptomatic
individuals, some of which may never develop symptoms, are infectious. In the absence
of testing, an individual without symptoms does not know whether she is healthy (nonin-
fectious), or infected asymptomatic, or even already recovered without having developed

1The negative externality from production and consumption network links is less important for other
viruses which are not transmitted as easily as Covid-19, such as HIV. For this other type of viruses, a
production/social network model may be less helpful for predictions and policy analysis.

2Other types of individuals’ choices – which are important for the spread of the virus and have eco-
nomic implications – are hygiene and keeping a distance from others in personal interactions. So far, we
have focused on working and consumption decisions because they have strong economic implications, and
mobility data that measures them are readily available.
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symptoms. This incomplete information facilitates the diffusion of the virus and is an im-
portant element in our model. In this context, testing asymptomatic individuals can reduce
this uncertainty, both for the tested individual and economy-wide. The degree of testing
is a policy variable chosen by the government.

We characterize an equilibrium of the dynamic game and present an algorithm for its
computation. We calibrate the model and use it to evaluate the health and economic impact
of factual and counterfactual public policies: subsidies for working at home; more testing;
herd immunity; and changes in the structure of the production/social network.

This paper tries to contribute to a rapidly growing economic literature on the diffusion
of COVID-19 and its economic impact. Our paper is closely related to the economic lit-
erature on rational epidemics that extends the SIR epidemiological model (Kermack and
McKendrick, 1927) to take into account how individuals react to changes in prevalence:
see Kremer (1996), Geoffard and Philipson (1996), Auld (2003), Chan, Hamilton, and Pa-
pageorge (2016), or Greenwood, Kircher, Santos, and Tertilt (2019), among others. Most
of this literature has focused on the HIV epidemics. Recent papers apply this approach
to study COVID-19. Alvarez, Argente, and Lippi (2020), Eichenbaum, Rebelo, and Tra-
bandt (2020), and Hall, Jones, and Klenow (2020) combine an epidemiological model
with a macro equilibrium model where individuals make consumption and labor supply
decisions and are (intertemporal) utility maximizers. Jones et al. (2020) study the tradeoffs
faced by a social planner who tries to mitigate the spread of COVID-19. They show that
the social planner’s solution implies a much more drastic reduction in consumption and
output than in a decentralized equilibrium. In a similar vein, Acemoglu, Chernozhukov,
Werning, and Whinston (2020) study Pareto optimal lockdown policies for COVID-19
–where the key tradeoff is between deaths and economic loss. They show that the Pareto
frontier can be substantially improved if lockdown policies apply differently across age
groups. In Farboodi, Jarosch, and Shimer (2020), forward-looking individuals choose a
degree of social interaction. Similar to our paper but distinctive to many others, newly-
infected individuals are unaware of their infection status and may spread the disease un-
knowingly. After calibrating their model, they quantify the expected cost of COVID-19
and the benefits of policy interventions.3

The standard SIR model and the macro equilibrium models mentioned in the previous
paragraph assume that everyone has an equal chance of meeting the infectious popu-
lation (i.e., random mixing). In practice, people interact more with those in their net-
works of family, work, or consumption, and this generates heterogeneity in the probabil-
ity of infection. Our model captures this type of heterogeneity. Some economic papers on
Covid-19 have also introduced a social network to understand the diffusion of the disease.
Karaivanov (2020) shows that testing and contact tracing are more effective in the network
model. However, his paper does not endogenize individual decisions. Azzimonti, Fogli,
Perri, and Ponder (2020) build a city network model where social networks (family, work,
school, and commute) determine production outputs and diffusion of the disease. Their
model demonstrates how the effects of a pandemic highly depend on the severed links
in social networks. Moreover, specifying the production sector is essential for assessing
trade-offs of different policies and their complementarities. However, in their model, in-
dividuals follow their routines unless they get sick. In contrast, our model endogenizes

3Berger, Herkenhoff, and Mongey (2020) and Piguillem and Shi (2020) study the value of information
from testing.
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individuals’ work and consumption choices.
Our paper is also related to the literature of learning in social network games. Computa-

tional tractability is a fundamental issue in this literature. Models with fully rational play-
ers with perfect Bayesian updating beliefs are intractable except in very stylized cases.4

Authors have proposed different forms of adaptive or naive learning from neighbors (Bala
and Goyal, 1998; Golub and Jackson, 2010). We follow this approach. More specifically,
our assumptions on agents’ information structure and beliefs updating are in the spirit
of Acemoglu, Dahleh, Lobel, and Ozdaglar (2011); Acemoglu, Bimpikis, and Ozdaglar
(2014) and Mossel, Mueller-Frank, Sly, and Tamuz (2020). In our model, agents combine
local and economy-wide information and use an adaptive rule to update their beliefs about
health and probability of infection. In contrast, to most models in this literature, agents in
our model are forward-looking. However, for tractability, we need to impose restrictions
on their beliefs about other agents in the game.

In contrast to the standard SIR model, the infection rate in our model is endogenous
and heterogeneous across workplaces. Pichler (2015) proposes a model of endogenous
sickness absences to study their procyclical behavior. In his model, the probability that
a sick individual goes to work is higher in a boom than in a bust, and this implies a
broader spread of a virus during periods of economic expansion. In our model, the risk
of infection depends on the number of infected coworkers who decide to work in the
workplace and not at home. This is an endogenous decision. There is complementarity in
the production function between coworkers’ choices of working in-site or at home. This
implies that an increase in the risk of infection of an individual has a social multiplier
effect on coworkers’ decision of working at home.

In our model, the local structure of the production/social network plays a key role in
the diffusion of the virus in a local community and across communities. Measures of so-
cial connectivity and mobility are important. Kuchler, Russel, and Stroebel (2020) use
data from Facebook to measure the degree of social connectivity in Italy and in US. They
present evidence on the relationship between an index of social connectivity and the den-
sity of COVID-19 cases. In an influential paper, Adda (2016) uses detailed weekly data
on disease incidence in France covering a period of 25 years to measure how exogenous
changes in social distancing – public transportation strikes, opening of new railway lines,
school closure due to holidays – affect the probability of infection.

A motivation for our paper is to provide a framework to evaluate the economic impact
of factual and counterfactual public policies to mitigate the spread of COVID-19. Recent
papers present evidence for Japan, Italy, and France, respectively. Inoue and Todo (2020)
use a large dataset with information from more than 1.6 million firms and almost 6 million
supply-chain links in Tokyo to quantify the economic impact of a hypothetical lockdown
policy in this city. Their estimates and experiments show a huge production loss of 309
billion yen per day. This effect would quickly spread to the whole Japanese economy such
that in one month total output would be reduced by 86%. Boeri, Caiumi, and Paccagnella
(2020) study the impact of COVID-19 on employment and on the type of jobs in Italy.
Barrot, Grassi, and Sauvagnat (2020) propose measures on the degree of remote working
for different industries in France and use these measures to estimate how social-distancing

4See the discussion on this issue in the recent paper by Mossel, Mueller-Frank, Sly, and Tamuz (2020)
(2020; pages 1235-1236), and their citation to Gale and Karaivanov (2020): “The computational difficulty
of solving the model is massive even in the case of three persons”.
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policies have affected production. They conclude that a six weeks confinement reduces
GDP by approximately 5.6%. The upstream sectors are the most negatively affected. The
analysis emphasizes the importance of industrial composition for the aggregate economic
impact.

The rest of this paper is organized as follows. Section 2 presents the model. Section
3 presents a calibration of the model and our policy experiments. We summarize and
conclude in section 4.

2. MODEL

2.1. The network

The economy consists of a set of L geographic locations, L = {1, 2, ..., L}, and a
set of N individuals, I = {1, 2, ..., N}. We index locations by ` and individuals by i.
Time is discrete and indexed by t ∈ {0, 1, ...}. One period is one day. There are three
types of locations: homes, workplaces, and consumption places. Each individual has her
own set of locations where she develops her life: her home(s), LH

i , workplaces, LW
i ,

and consumption places, LC
i . Each of these individual-specific sets may contain one or

multiple locations.
An individual’s household consists of all the other individuals who share the same

home: that is, the set Hi ≡ {j : LH
i ∩ LH

j 6= ∅}. Similarly, an individual’s production
(consumption) team consists of all the other people who share a workplace (consumption
place) with her: that is, the set Wi ≡ {j : LW

i ∩ LW
j 6= ∅} for production, and the set

Ci ≡ {j : LC
i ∩ LC

j 6= ∅} for consumption.
The combination of all these sets, {LH

i , LW
i , LC

i : i ∈ I} or equivalently {Hi,Wi, Ci :
i ∈ I}, describes the network in this economy. This network is an exogenous primitive
in the model.5 The network can vary across economies because industrial composition,
geography, transportation infrastructures, culture, etc. In this model, the network not only
describes social and economic interlinks but also physical contacts. We assume that an
individual with the virus can infect other individual only if they share a common location,
either home, or workplace, or consumption place.

A network can be represented by a graph consisting of nodes and edges. Nodes corre-
spond to the set of individuals while edges represent who they are connected to, either
through homes, workplaces or consumption places. The degree of a node, di, is defined as
the number of neighbors it has. In our model, di is the cardinality (number of elements)
of the set {Hi,Wi, Ci}. Three properties are often used to describe a graph: (i) the distri-
bution of degrees di, which measures the heterogeneity of individual’s connectivity; (ii)
the clustering coefficient, which measures how often a triple of nodes forms a triangle;
and (iii) the average path length, where a path length is defined as the smallest number of
edges one needs to travel to connect two nodes. This statistic measures how connected the
network is. A regular graph is a graph where each node has the same degree: the distribu-
tion of degrees is degenerate. Social networks in reality have a non-uniform distribution

5Although the network is an exogenous primitive, in our model an individual makes daily choices about
which of her production and consumption places to visit on a given day. The model’s solution determines
a probability distribution over the locations she visits and the persons she meets. In this sense, the network
is endogenous and it changes as the epidemic spreads. However, we assume that an individual’s sets of
production and consumption places remain fixed. We believe this is a plausible assumption because Covid-
19 is not good time to expand your group of physical friends, consumption places, or workplaces.
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of degrees, with some individuals having more connections than others.

2.2. Health and diagnosis states and transitions

Variable xit ∈ X describes the health and diagnosis state of individual i at period t. It
can take ten possible values: X ≡ {H, AU , AD, SU , SD, RAU , RSU , RAD, RSD,
Death}.

State H (for Healthy) means that the individual has not been infected with the virus.
States AU , AD, SU , and SD represent infected individuals at different states depending
on the development of symptoms and on the existence of diagnosis.6 State AU (for in-
fected Asymptomatic Undiagnosed) represents an individual who is infected but has not
developed symptoms yet and has not been diagnosed. State AD means that the individual
is infected and asymptomatic (A) but she has been diagnosed (D). State SU represents
an infected individual who has developed symptoms (S) but has not been diagnosed (U ).
State SD represents an infected individual who has developed symptoms (S) and has
been diagnosed (D).

States RAU , RSU , RAD, and RSD represent recovered individuals who are at dif-
ferent states depending on whether they developed symptoms and whether they were di-
agnosed.7 States RAU and RSU represent recovered individuals who had never been
diagnosed – asymptomatic and symptomatic, respectively – such that the individual does
not know that she has been infected. In contrast, states RAD and RSD represent recov-
ered individuals who had been previously diagnosed. Finally,Deathmeans death because
of the virus.

6Throughout the paper, we use the term infected as synonymous of infectious. In reality, this is not
exactly the case. A virus needs to replicate itself sufficiently in a person’s body before this person becomes
infectious. Our model can be trivially extended to include an additional state between states H and AU
such that the model would distinguish between infected and infectious. This additional state – say E form
“Exposed” – would represent an individual who had the virus but has not become infectious yet.

7We assume that "Recovered" implies not infectious and immune.
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Transitions between states are based on two types of shocks: health shocks, and test-
ing shocks. We consider that health shocks can take three values: positive, negative, and
neutral. Moreover, we assume that tests are accurate such that they cannot provide neither
false positives nor false negatives. Figure 1 presents a flow diagram of a simplified ver-
sion of our model with only four health states. Figure 2 presents the flow diagram of our
model.

(i) Infection [Transition H → AU]. Every day t, a healthy individual (H) can become
infected with a probability πI

it. This probability is endogenous. It depends on the individ-
ual’s behavior (confinement or not) and on the behavior of other individuals in her social
group. We describe the form of this endogenous probability in section 2.5 below. Indi-
viduals in state H can be randomly selected to be tested. If the test result is negative, the
individual remains in state H .

(ii) Transitions from AU . Every period, an individual in state AU (infected asymptomatic
undiagnosed) receives a health shock and a testing shock. The health shock can take three
possible values: positive (with probability π+A), negative (with probability π−A), or neu-
tral. If the shock is positive, the individual recovers and becomes immune. If the shock
is negative, the individual develops symptoms. We assume that individuals cannot transi-
tion within one day from asymptomatic to death: they need to develop symptoms before
dying.

The testing shock is independent of the health shock and it determines whether the
individual is tested for the virus (with probability λA) or not (with probability 1 − λA).
We also assume that an individual in AU cannot be tested positive on the same day that
she receives a positive health shock and recovers.8

Under these conditions, there are five possible transitions from state AU . (1) Neutral
health shock and no testing – with probability (1 − π+A − π−A) (1 − λA) – implies
that the individual remains in the same state AU . (2) Neutral health shock and testing –
with probability (1 − π+A − π−A) λA – implies that she remains asymptomatic but now
is diagnosed: she moves to state AD. (3) Regardless testing, a positive health shock –
with probability π+A – means that she recovers and has not been diagnosed such that
she does not know that she was infected. This corresponds to state RAU . (4) Negative
health shock and no testing – with probability π−A (1− λA) – implies that the individual
develops symptoms but is still undiagnosed: she moves to state SU . (5) Finally, with a
negative health shock and testing – with probability π−A λA – the individual moves to
state SD where she is both symptomatic and diagnosed.

(iii) Transitions from SU . The transitions from state SU are similar to those from AU ,
but a main difference is that a negative health shock implies death. Furthermore, the prob-
abilities of a positive and a negative health shock for a symptomatic individual – π+SU

and π−SU , respectively – are different that for an asymptomatic. The government policy
on testing can be different for symptomatic and asymptomatic, such that probability λS is

8We are assuming that all the testing is PCR testing. A PCR test detects the infection while it is active. For
a PCR test, individuals in states A and S should test positive, and individuals in states H and R negative.
For this test, the rates of false positives or false negatives are very low. An interesting extension of the model
would be to include other tests that are emerging, including testing for antibodies and immunity.
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different to λA. Similarly as for state AU , we assume that the individual cannot recover
and test positive on the same day.

Health and testing shocks determine four possible transitions from state SU . (1) Under
neutral health shock and no testing, the individual remains in state SU – with probability
(1 − π+SU − π−SU) (1 − λS). (2) With neutral health shock and testing, she becomes
diagnosed and moves to state SD – with probability (1−π+SU−π−SU) λS . (3) A positive
health shock – regardless testing – means that she recovers and remains undiagnosed: she
moves to state RSU with probability π+SU . (4) Finally, regardless testing, with a negative
health shock – with probability π−SU – the individual dies.

(iv) Transitions fromAD and from SD. For diagnosed individuals, testing does not matter
and only health shocks determine the transitions from these states.

For an individual in state AD, the probability distribution of the health shocks is the
same as under state AU . That is, we assume that diagnosis does not affect the health tran-
sition when the individual is asymptomatic. There are three possible transitions. Under a
positive health shock, the individual recovers and arrives to state RAD – with probability
π+A. Under a negative health shock, she develops symptoms and moves to state SD –
with probability π−A. And with a neutral shock, she stays in state AD – with probability
1− π+A − π−A.

Being diagnosed can affect the distribution of health shocks if an individual is symp-
tomatic: that is, SD individuals are more likely to receive some treatment than SU indi-
viduals. Therefore, the probabilities π−SD and π+SD can be different than the probabilities
π−SU and π+SU .

There are three possible transitions under state SD. Given a positive health shock, the
individual recovers and arrives to state RSD – with probability π+SD. Under a negative
health shock – with probability π−SD – she dies. Finally, with a neutral shock she stays in
state SD with probability 1− π+SD − π−SD.

Finally, we assume that all the recovered states – RAU , RAD, RSU , RSD – are ab-
sorbing states. Individuals in states RAU and RSU can be subject to random testing, but
the test will be negative and individuals remain in the same state.

There are two relevant extensions of the model regarding the probability λA. First, it
is interesting to allow for false negatives in the results of the test. In this extension, the
probability λA could be interpreted as the product of two probabilities: the probability
of being selected for testing times the probability of a positive result of test conditional
on infection, i.e., a true positive. In that model, parameter λA measures the government
testing effort in two different dimensions: the number of tests and the quality of the testing
procedure. However, this extension of the model requires also some non-trivial changes
in individuals’ beliefs about their actual health status. A second relevant extension is to
allow the probability that an asymptomatic individual is selected for testing to depend
on the number of members in her social group who are diagnosed as infected. Finally,
the model applies to an epidemic before the development of vaccines. Introducing the
probability of being vaccinated is another interesting extension of this model.

2.3. Individual decisions

Every period t, individuals make two decisions: working at home or outside, and con-
suming at home or outside. For the rest of the paper, we focus on a simplified version
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where the only decision is working either at home or outside. We represent this decision
using the binary variable ait, where ait = 0 means working outside, and ait = 1 means
confinement at home. We also abstract from the home and consumption teams – they only
include the own individual – and focus on the workplace teamWi that has size |Wi|.

The set of feasible choices for an individual depends on her current state. In particular,
diagnosed individuals have mandatory confinement. We useA(xit) to represent the choice
set under state xit such that A(AD) = A(SD) = {1}, A(Death) = ∅, and at any
other state A(xit) = {0, 1}. For simplicity, we assume that confinement means that the
individual does not have physical relationship with any other member of the society.

The assumption that individuals who are undiagnosed or recovered have the freedom
to decide to work at home or outside deserves some explanation. One may be concerned
that this decision is taken by the firm’s manager or, in the case of mandatory confinement
policies, by the government. These are important concerns that we take into account. In
fact, we consider that government confinement policies can be applied with very different
degrees of flexibility and not uniformly in all the sectors and regions of the economy.
Though we can evaluate a hypothetical policy where the government has the ability to
lockdown every individual at home, we are interested in more realistic policies that consist
of penalties for working or consuming outside, or subsidies for confinement at home.
These penalties and subsidies may vary across industries and/or geographic locations.

2.4. Information structure

The assumptions about individuals’ information are important for predicting individual
behavior and diffusion of the virus.

(i) Information about the network. An individual knows the identity of the members
of her social group but she does not have information about the structure of the network
outside of her own units, e.g., coworkers of coworkers, etc. According to this condition,
we assume below that individuals have only information about members of her social
group and economy-wide aggregate information provided by government and media.

(ii) Information about own health status. We consider that, without a test, an individual
cannot distinguish between being healthy (H), infected asymptomatic undiagnosed (AU ),
and recovered after being asymptomatic undiagnosed (RAU ). We use H̃ to represent
the union of these three states: H̃ ≡ H ∪ AU ∪ RAU . We assume that an individual’s
information about her own health status is captured by the variable x̃it such that:

(1) x̃it =

 H̃ if xit ∈ {H , AU , RAU}

xit if xit /∈ {H , AU , RAU}

For an individual in H̃ , it is important to know the likelihood of being in state H , or
AU , or RAU . In particular, her confinement decision can have implications on her future
health only if she is in state H , but it is completely irrelevant if she is already in states
AU or RAU . Therefore, an individual in state H̃ forms beliefs about the probability of
being in each of the three specific states. We represent these beliefs as the probabilities
B

H|H̃
it , BAU |H̃

it , and BRAU |H̃
it such that BH|H̃

it + B
AU |H̃
it + B

RAU |H̃
it = 1. These beliefs are

part of the individual’s information set at period t. In section 2.8 below, we describe our
assumptions about the initial value and the updating rule of these beliefs.

An individual in state RSU knows that she has experienced symptoms in the past and
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now does not have those symptoms, but – similarly as someone in state RAU – she does
not know that is immune because she has not been diagnosed. From the point of view
of an individual’s information, state RSU is different to H̃ only if the symptoms from
COVID-19 are different to those from other diseases, like the common flu. For instance,
if COVID symptoms were clearly distinguishable, then state RSU would be equivalent to
stateRSD. At the other extreme, if the symptoms were the same as those from a common
flu, then stateRSU would be part of H̃ . More generally, we can have a probabilistic belief
that captures the informative content of COVID symptoms. In our numerical experiments
in section 3, we have assumed that state RSU is equivalent to RSD.

(iii) Information about health statuses of members of the own team. An individual
knows the value x̃jt for any other individual in her social group, {x̃jt : j ∈ Hi∪Wi∪Ci}.

(iv) Information about health statuses of individuals outside the own team. An individ-
ual does not know the health status of individuals outside her team. However, she has
information at the aggregate level for the whole economy. In particular, for every state
x ∈ X , she knows the proportion of individuals in state x at period t. We represent this
aggregate shares as St(x), and St is the vector {St(x) : x ∈ X}. The implicit assumption
is that the Health Ministry collects this information and communicates it to the citizen-
ship.

(v) Aggregate probability of confinement. An individual has rational beliefs on the equi-
librium probability of confinement at period t for each state x̃. We use Qt(x̃) to represent
these average probabilities, and Qt to represent the vector {Qt(x̃) : x̃ ∈ X̃}.

(vi) Previous day’s own decision of confinement. Individual i knows her own choice
at previous period, ai,t−1. As we explain below in the description of the utility function,
lagged choices are payoff relevant because there are costs of changing the form of working
– outside or remotely. For computational simplicity, we assume that individuals do not use
information on the lagged actions of team members.

(vii) Private information productivity shocks. Finally, individuals are subject to produc-
tivity shocks which are their own private information and are independently distributed
across individuals and over time. We represent those shocks as εit(0) – if working outside
– and εit(1) – if working at home.

Summarizing, the information set of individual i at period t is:

(2) Ωit = (x̃it, St, Qt, εit(0), εit(1))

where we use the bold letter x̃it to represent in a compact form the vector of state variables
(x̃it, B

H|H̃
it , BAU |H̃

it , ai,t−1, {x̃jt : j ∈ Wi}).

2.5. Probability of infection

Let n(x,0)
it be the number of members in i’s team who are in state x and choose to work

outside. The probability of infection is an increasing function of the number of infected
people that individual i interacts with at period t: that is, a function of n(AU,0)

it + n
(SU,0)
it .

Let πI
it be the probability of infection. Then,

(3) πI
it =


0 if ait = 1

1− (1− ρI)n
(AU,0)
it +n

(SU,0)
it if ait = 0
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where the parameter ρI ∈ (0, 1) measures the probability of getting infected from one
infectious teammate. The expression assumes independence (and homogeneity) between
the events of getting infected from each sick member. Note that πI

it is zero if there are not
infected team members.

The probability of infection depends on variables which are not part of the information
set of individual i. In particular, individual i does not know the number n(AU,0)

it + n
(SU,0)
it

because: (i) she cannot distinguish team members who are healthy from those who are
infected but undiagnosed; and (ii) she does not know their current confinement decisions
ajt. Given her information set Ωit, individual i forms expectations about her infection
probability πI

it. We describe these beliefs in section 2.9.

2.6. Production function

The amount of output generated by an individual (Yit) depends on her own health sta-
tus and confinement choice, and on the health statuses and confinement choices of her
coworkers. If an individual is diagnosed with infection, she is isolated and does not par-
ticipate in production such that her output is zero. Therefore, we have that Yit = 0 if
xit ∈ {AD, SD, Death}. For the other states, the production function is:

(4) Yit = α(ait) + β(ait, 0) n
(a=0)
it + β(ait, 1) n

(a=1)
it

where α(0), α(1), β(0, 0), β(0, 1), β(1, 0), β(1, 1), γ(0), and γ(1) are structural param-
eters, and n(a=0)

it and n(a=1)
it are the numbers of other individuals in the production team

who decide to work at the workplace and remotely from home, respectively.
Parameter α(a) represents the output of an individual when nobody else in the pro-

duction unit works outside and her confinement choice is a. We expect α(0) > α(1)
since confinement reduces an individual’s feasible actions. Parameter β(a, a′) measures
the contribution of a coworker to the output of an individual when the coworker’s con-
finement choice is a′ and the individual’s choice is a. We expect β(a, 0) > β(a, 1) and
β(0, a′) > β(1, a′). Furthermore, we expect to have complementarity (supermodularity)
between the working outside decisions of coworkers such that:

(5) β(0, 0)− β(0, 1)− β(1, 0) + β(1, 1) > 0

2.7. Preferences

An individual’s utility depends on the utility from consumption, u(Cit), plus the util-
ity from her health status, φ(xit), and minus adjustment costs ω(ait, ai,t−1).9 We do not
consider intertemporal consumption smoothing, such that consumption is equal to out-
put minus net taxes (taxes minus subsidies): Cit(ait) = Yit(ait) − τi(ait, xit). Net taxes,
τi(ait, xit), may depend on the individual’s confinement decision and on her health/diagnosis
state.10 The utility function is:

(6) Uit(ait) = u(Yit(ait)− τi(ait, xit)) + φ(xit)− ω(ait, ai,t−1) + εit(ait)

9The cost of no change is zero, such that ω(0, 0) = ω(1, 1) = 0.
10For instance, we may think in different tax/subsidy policies for immune individuals.
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where {φ(x) : x ∈ X}, ω(1, 0), and ω(0, 1) are parameters, and εit(0) and εit(1) are
private information shocks in individual i’s utility of working outside and confined, re-
spectively, and they are independently and identically distributed across individuals and
over time with an extreme value type I distribution. We assume that u(.) is a linear func-
tion: u(C) = C.11

For the utility from health status, we assume that φ(Death) = 0 and:

(7) φ(x) =


φalive + φhealth for x ∈ {H,AU,AD,RAU,RSU}

φalive + φhealth + φimmu for x ∈ {RAD,RSD}

φalive for x ∈ {SU, SD}

Parameter φalive represents the flow utility from being alive. Parameter φhealth represents
the extra utility from being (or feeling) healthy. Since an individual cannot distinguish
between states H , AU , or RAU , we assume that these states report the same utility. Pa-
rameter φimmu captures the additional utility from the knowledge of being recovered and
immune.

Changing the location for working involves adjustment costs. Parameter ω(1, 0) is the
cost of moving from working outside to working at home; similarly, ω(0, 1) is the cost of
moving from working at home to working outside. They capture actual sunk investment
costs as well as habits. These costs can play an important role to explain persistence in
individual behavior and slow transitions at the aggregate level.

2.8. Best response under two simplifying assumptions

The numerical experiments in this paper are based on a version of the model that incor-
porates simplifying assumptions A1 and A2.
(A1) Individuals in the recovered states RSU , RAD, and RSD always choose to work

outside. Individuals in state SU always choose to work at home. This behavior
is common knowledge. According to this assumption, the only individuals free to
choose are those in state H̃ = {H ∪ AU∪ RAU}.

(A2) Individuals are quasi myopic. They are forward looking only in terms of how to-
day’s decision of where to work affects their own risk of being infected next period.
The intertemporal utility function is:

(8) Uit(ait) + δ W (xi,t+1[ait]),

where δ is the discount factor and W (x) represents a terminal present value of
having health x.12 We use the notation xi,t+1[ait] to emphasize that health status at
t+ 1 depends on the confinement decision at t.

11Alternatively, our specification can be interpreted as one where the utility function is logarithmic,
u(C) = ln(C), the production function is Cobb-Douglas, Yit = exp{α(ait)+ β(ait, 0) n

(a=0)
it + β(ait, 1)

n
(a=1)
it + γ(ait) Qt}, and taxes are proportional, i.e., Cit = Yit(1− τit).

12Function W (x) is the expected and discounted value of future utilities for states that will be visited in
the future. A key restriction is that the individual ignores that the stream of future utilities depends on her
future behavior. She believes that the transition between health states in the future is based on exogenous
probabilities.
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Under these conditions, for an individual in state H̃ the best response is working at
home if:

(9) Eit[Uit(1)− Uit(0)] + δ Eit[W (xi,t+1[1])−W (xi,t+1[0])] ≥ 0

where the expectation Eit is taken over the individual’s beliefs, that we specify in section
2.9 below. The term Eit[Uit(1)−Uit(0)] is equal to α̃+τ̃+β̃0 Eit(n

(a=0)
it )+β̃1 Eit(n

(a=1)
it )+

ε̃it, with α̃ ≡ α(1)−α(0), τ̃ ≡ τ(1)−τ(0), β̃0 ≡ β(1, 0)−β(0, 0), β̃1 ≡ β(1, 1)−β(0, 1),
and ε̃it ≡ εit(1) − εit(0). The probability distribution of next period health depends on
today’s confinement decision only if the individual is currently healthy (xit = H). In
that case, next period health can take two possible values: H or AU . If ait = 1, we have
that xi,t+1 = H with probability one. If ait = 0, we have that xi,t+1 is equal to AU with

probability Eit(1−(1− ρI)n
(AU,0)
it ) and is equal toH with probability Eit((1− ρI)n

(AU,0)
it ),

where the expectation Eit(.) is taken over the the individual’s beliefs about the distribution
of n(AU,0)

it . Therefore, we have that:

(10) Eit [W (xi,t+1[1])−W (xi,t+1[0])] = B
H|H̃
it [WH −WAU ]

[
1− Eit((1− ρI)n

(AU,0)
it )

]
When the parameter ρI is close to zero, we have that 1 − Eit((1− ρI)n

(AU,0)
it ) can be

approximated well using ρI Eit(n
(AU,0)
it ).

Putting all these pieces together, we have that the best response is working at home if
the following condition holds:

(11) α̃+τ̃+β̃0 Eit(n
(a=0)
it )+β̃1 Eit(n

(a=1)
it )+ε̃it+B

H|H̃
it [WH −WAU ] ρI Eit(n

(AU,0)
it ) ≥ 0

To complete the characterization of this best response condition, we need to specify indi-
viduals’ beliefs and their evolution over time.

2.9. Beliefs

Equation (11) shows that, to make her best response, an individual needs to form beliefs
about the probability of her actual health status (BH|H̃

it ), and about the health statuses and
confinement decisions of her team members (Eit(n

(a=0)
it ), Eit(n

(a=1)
it ), and Eit(n

(AU,0)
it )).

This section describes our conditions on these beliefs.

(i) Current health status and confinement choices of other individuals in the team. For
any state x different to H̃ , individual i knows the number of coworkers in that state – n(x)

it

– but she does not know their current confinement choices: i.e., she does not know n
(x,0)
it

and n(x,1)
it . We assume that individuals use the aggregate frequencies in Qt(x̃) to form

probabilistic beliefs about the choices of team members in state x̃. Individuals believe
that n(x,0)

it has a Binomial distribution with arguments n(x)
it and 1 − Qt(x). Accordingly,

and using assumption (A1), the expected values of the number of team members working
outside and at home are:
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(12)


Eit

(
n
(a=0)
it

)
= n

(R̃)
it + n

(H̃)
it [1−Qt(H̃)]

Eit

(
n
(a=1)
it

)
= n

(AD)
it + n

(SU)
it + n

(H̃)
it Qt(H̃)

where R̃ represents the union of states {RSU∪ RAD∪ RSD}.
An individual also knows the number of coworkers in state H̃ , that we denote as n(H̃)

it .
But she does not the values of n(x,a)

it for x = H, AU, RAU and a = 0, 1. We assume
that individuals use the aggregate frequencies in St to form their beliefs about the actual
health status of a team member at state H̃ . Therefore, for x ∈ H̃ , individuals believe that
variable n(x,a)

it has a Binomial distribution with arguments n(H̃)
it and p(x,a)|H̃it , where:

(13) p
(x,a)|H̃
it ≡ St(x)

St(H̃)
(1−Qt(H̃))1−a Qt(H̃)a.

In particular, individual i beliefs that n(AU,0)
it has a Binomial distribution with arguments

n = n
(H̃)
it and p = St(AU)

St(H̃)
(1−Qt(H̃)) such that:

(14) Eit(n
(AU,0)
it ) = n

(H̃)
it

St(AU)

St(H̃)
(1−Qt(H̃))

These beliefs differ from the ones of a perfectly rational (Bayesian) individual in two
aspects. First, she does not use the previous history of health statuses of team members to
form beliefs about their current health statuses – H, AU, or RAU – and review these beliefs
using Bayesian updating. Instead, she uses only the aggregate probabilities St(x). Second,
by using the aggregate probability of confinement, Qt(x), individual i is not taking into
account that her own health status can affect her teammates’ confinement decisions. For
instance, the probability of confinement of a team member can be larger if i’s own health
is SD than if it is H .

(ii) Expected probability of infection. Conditional on working choice ait, the expected
probability of infection for individual i – that we denote as πI,own

it (ait) – has the following
expression:

(15) πI,own
it (ait) ≡ (1−ait)

∑
n

BIN

(
n | n(H̃)

it ,
St(AU)

St(H̃)
(1−Qt(H̃))

)
[1− (1− ρI)n]

where BIN(n|N, p) represents the density function of a Binomial distribution with pa-
rameters N and p.

(iii) Evolution of beliefs about own health status H̃ . An individual in state H̃ uses prob-
abilistic beliefs about her actual status, that we denote as BH|H̃

it , BAU |H̃
it , and BRAU |H̃

it .
Every period, she updates these beliefs using new information. At period t, if the indi-
vidual remains in state H̃ , the beliefs about her actual health status are updated using the
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following natural formula. For x = H , AU , RAU :

(16) B
x|H̃
it =

F i
it(x | H̃, ai,t−1)

F i
it(H | H̃, ai,t−1) + F i

it(AU | H̃, ai,t−1) + F i
it(RAU | H̃)

where F i
it(x|H̃, a) is individual i’s (subjective) probability of xit = x given that x̃i,t−1 =

H̃ and ai,t−1 = a. They have the following form:

(17)

 F i
it(H | H̃, ai,t−1) = B

H|H̃
i,t−1

(
1− πI,own

i,t−1 (ai,t−1)
)

F i
it(AU | H̃, ai,t−1) = B

AU |H̃
i,t−1 (1− π+A − π−A) (1− λA) +B

H|H̃
i,t−1 π

I,own
i,t−1 (ai,t−1)

The first equation says that an individual is healthy at t if she was healthy at period t− 1

– that has subjective belief BH|H̃
i,t−1 – and was not infected during that period – that has

subjective belief 1 − πI,own
i,t−1 (ai,t−1). The second equation establishes that she arrives to

state AU at t either if she was at state AU at period t − 1 and she gets a neutral health
shock and no testing, or shes was at state H at period t− 1 and gets infected. The rest of
the transition probabilities from state H̃ do not depend on ai,t−1.
Note that this updating rule depends on the individual’s previous confinement choice and
on previous infection probabilities. In particular, BH|H̃

it is greater with ai,t−1 = 1 than
with ai,t−1 = 0.

2.10. Equilibrium

The best response of an individual in state H̃ can be represented as a choice probability
that results from integrating the condition in equation (11) over the distribution of the
shocks ε̃it. Putting together equations (11), (12), and (14), the best response probability
of confinement is:

(18) Pit(H̃) = Λ
(
αit + βit Qt(H̃)

)
with

(19)


αit = α̃+ τ̃ + β̃0(n

(R̃)
it + n

(H̃)
it ) + β̃1 n

(AD)
it + δB

H|H̃
it [WH −WAU ] ρI n

(H̃)
it

St(AU)

St(H̃)

βit =
[
β̃1 − β̃0 − δBH|H̃

it [WH −WAU ] ρI
St(AU)

St(H̃)

]
n
(H̃)
it

Under condition (A1), the probability of confinement Qt(H̃) is the only endogenous ele-
ment in the vector Qt such that the equilibrium mapping is a scalar function. This equi-
librium depends on individuals’ best response probabilities of confinement Pit(H̃).

Let x̃t be the vector (xit, ai,t−1, B
H|H̃
it , BAU |H̃

it : i = 1, 2, ..., N). That is, x̃t contains
health status, current beliefs about status conditional on H̃ , and last period choice of every
individual in the economy.13

13Since St is the vector of frequencies of each health status, we have that St is a deterministic function
of x̃t.
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DEFINITION. Given x̃t (and the corresponding St), an equilibrium is a vector of prob-
abilities of confinement Pit(H̃) – one for each individual – and an aggregate probability
of confinement Qt(H̃) that satisfy the following conditions: (i) Pit(H̃) is a best response
probability that satisfies equation (18); and (ii) Qt(H̃) is the probability that results from
the aggregation of individual choice probabilities:

(20) Qt(H̃) =

∑
i∈I 1{x̃it = H̃} Pit(H̃)∑

i∈I 1{x̃it = H̃}

Equilibrium conditions (i) and (ii) can be combined into a single condition: the aggregate
probability of confinement Qt(H̃) is a solution to the following fixed point mapping Ψt:

(21) Qt(H̃) = Ψt

(
Qt(H̃)

)
≡

∑
i∈I 1{x̃it = H̃} Λ

(
αit + βit Qt(H̃)

)
∑

i∈I 1{x̃it = H̃}
�

Remark 1. Equilibrium existence. The equilibrium mapping Ψt in equation (21) is contin-
uous on the compact set [0, 1]. By Brower’s theorem, an equilibrium exists.

Remark 2. Strategic complementarity vs. substitutability in individuals’ confinement de-
cisions. If an individual’s propensity to confinement Pit(H̃) increases with the aggregate
probability of confinement Qt(H̃), then we say that confinement decisions are strategic
complements and we have a coordination game. Otherwise, confinement decisions are
strategic substitutes and we have an entry game. Depending on the values of the parame-
ters, this model can generate either complementarity or substitutability. The complemen-
tarity between individuals’ confinement decisions in the production function can generate
strategic complementarity in this game. However, individuals’ concern for their future
health can generate strategic substitutability. The larger the proportion of confined indi-
viduals, the lower the probability of getting infected and the smaller the expected health
benefits of current confinement.

The analytical expression for the derivative Ψ′t

(
Qt(H̃)

)
provides a simple approach to

determine whether there is strategic complementarity or substitutability between individ-
uals’ confinement decisions. The sign of βit determines the sign of Ψ′t such that we have
complementarity when βit > 0 and substitutability when βit < 0.

Strategic complementarity or substitutability in confinement decisions can have impor-
tant policy implications. Under complementarity, small incentives to confinement may
generate large changes in the aggregate probability Qt(H̃). In contrast, under substi-
tutability, it may be difficult to achieve a high aggregate probability of confinement.

Remark 3. Equilibrium uniqueness. We can also use the analytical expression of the
derivative Ψ′t to obtain a sufficient condition for equilibrium uniqueness that only de-
pends on values of the structural parameters such that it can be easily checked. First, it
is clear that if Ψ′t < 0, then the equilibrium is unique. The sign of Ψ′t is equal to the
sign of βit. A sufficient condition for βit < 0 is that β̃1 − β̃0 < 0, and this condition
holds if the production function is submodular in team members’ decisions of working
outside. However, as established in equation (5) above, we expect the production func-
tion to be supermodular. Suppose this is the case, such that β̃1 − β̃0 > 0. Then, there
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are always values of BH|H̃
it and S(AU)

t /S
(H)
t close enough to zero such that βit > 0. This

means that, in this case, we cannot find values of the structural parameters that imply
Ψ′t < 0. However, we also have equilibrium uniqueness if 0 < Ψ′t < 1. Taking into ac-
count that the derivative of the logistic function is Λ′(u) = Λ(u) [1 − Λ(u)] ≤ 1/4, and
that βit < [β̃1 − β̃0]nH̃

it < [β̃1 − β̃0] maxi |Wi|, we have that:

(22)

Ψ′t =

∑
i∈I 1{x̃it = H̃} βit Λ′it∑

i∈I 1{x̃it = H̃}

≤
[
β̃1 − β̃0

] ∑
i∈I 1{x̃it = H̃} n(H̃)

it Λ′it∑
i∈I 1{x̃it = H̃}

≤ 1

4

[
β̃1 − β̃0

] ∑
i∈I 1{x̃it = H̃} n(H̃)

it∑
i∈I 1{x̃it = H̃}

≤ 1

4

[
β̃1 − β̃0

]
maxi |Wi|

The last expression in equation (22) is an upper bound to Ψ′t. This upper bound depends
only on primitives of the model such that it can be easily calculated before the compu-
tation of an equilibrium. If this expression is strictly smaller than 1, then the equilibrium
value Qt(H̃) is unique. In the numerical experiments in section 3, we confirm that this
condition holds for our parameterization / calibration of the model and we apply fixed
point iterations to calculate an equilibrium.

Remark 4. Endogenous stochastic process of {x̃t,at : t ≥ 1}. As defined above, the
equilibrium concept that we use takes x̃t as given and it applies to one period. However,
this equilibrium concept implies a stochastic process for the vectors of state and decisions
variables. Given x̃t, the equilibrium at period t implies an aggregate probability of con-
finement Qt(H̃) and the corresponding probabilities of confinement for every individual
i: Pit(H̃). These probabilities define the distribution of the vector of choices at condi-
tional on x̃t. Then, the transition probabilities of the health state variable and the updating
rule of beliefs define the probability distribution of x̃t+1 conditional on x̃t and at.

3. NUMERICAL EXPERIMENTS

In this section, we present several numerical experiments to illustrate the properties and
predictions of the model.14 To make the results more transparent, we focus on the impli-
cations of different network structures while ignoring other heterogeneity forms. For the
Covid-19 pandemic, there is substantial evidence on individual heterogeneity in behavior
and in transition probabilities between health statuses. Perhaps, the most notorious is the
effect of age on the likelihood of developing symptoms and on subsequent adverse health
shocks. Production function parameters may also vary in the population, depending on the

14The code in R language for the replication of these numerical experiments can be downloaded at
http://jiayinggu.weebly.com/uploads/3/8/9/3/38937991/replication.zip
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TABLE I
PARAMETERS IN BENCHMARK SCENARIO (EXPERIMENT 1)

• Population: N = 10, 000 Production function (F = 8.1435)
• # individuals infected at period 1: 10 α(0) + β(0, 0) |W| = F
• Number of team members: |W| = 40 α(0) + β(0, 1) |W| = 0.40 F

α(1) + β(1, 0) |W| = 0.35 F
Epidemiological parameters α(1) + β(1, 1) |W| = 0.20 F
• π−A = 1/6; π+A = 1/7 α(0) = 0.20 F
• π+SU = 1/14; π−SU = (10/90)(1/14), α(1) = 0.05 F
implying mortality rate at SU = 10%. Λ (α(1)− α(0) + [β(1, 0)− β(0, 0)]|W|) = 0.005
• π+SD = 1/10; π−SD = (5/95)(1/10)
implying mortality rate at SD = 5% Preferences
• Infection rate: ρI = 0.27 Λ(α(1)− α(0) + [β(1, 1)− β(0, 1)]|W|+ δ [WH −WAU ])=0.99

and this implies δ [WH −WAU ] = 6.223

education of the individual or her occupation. In our model, we can allow all the structural
parameters to be functions of time-invariant individual demographics that are observable
to the researcher, e.g., age, gender, education. We believe that the structural estimation of
our model using microeconomic data would involve this type of specification. However,
in our numerical experiments, we omit this type of heterogeneity. In this paper, we are
particularly interested in studying the implications of different network structures, and
the results would be noisier if we included other forms of heterogeneity.

Based on our calibration, we solve the model and simulate the path of the endogenous
variables under different experiments. Experiment 1 is our benchmark scenario and is
characterized by a ring network structure, an initial herd immunity of 0%, and no public
interventions – no testing and no subsidies. Each of the other experiments incorporates
a specific modification with respect to this benchmark. In experiment 2, the initial level
of herd immunity is 67%. In experiment 3, we incorporate a government subsidy to work
from home. We present results for three levels of this subsidy: 20%, 30%, and 40% of an
individual’s earnings if her workplace works at full capacity, i.e., when all the workers are
active and working in site. In experiment 4, we introduce testing. We present results for
three different levels of testing rate: 2%, 10%, and 20% for asymptomatic individuals, and
80% for symptomatic. Finally, in experiment 5, we modify the structure of the network of
social connections.

3.1. Parameterization / Calibration

Table I presents then parameters used for the benchmark scenario (Experiment 1).

Population. We consider a population with 10, 000 individuals.15

Number of individuals infected at the initial period. At day 1, there are 10 individuals
(i.e., 0.1% of the population), randomly selected, who are infected and undiagnosed (state
AU ). The rest of the individuals are in state H .

15Computation time scales up with the size of the population, but the results with a larger population of
100, 000 individuals share very similar dynamics to the results we present below.
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Network structure. In these experiments we consider four different types of networks: a
ring lattice; a small world network; a caveman graph; and a randomly rewired caveman
graph. Figure 3 presents examples of these network structures with 25 individuals.

A ring lattice is a regular graph – each node has the same degree – where nodes are
arranged in a circle with each node connected to |W| nearest neighbors. A ring network
with N >> |W| has a high clustering coefficient and high average path length. A ring
lattice does not capture the observed degree heterogeneity that we find in actual social
networks. The network at the bottom left of figure 3 is a ring lattice with 25 individuals
each having 5 edges.

The small world network is a variation of a ring lattice where some nodes are randomly
rewired. This random rewiring has the effect of reducing the average path length. An
example of a small world network is shown at the lower right of figure 3.

A caveman graph consists of several local clusters where nodes within a cluster are
highly connected but there is very little connection between clusters. In our model, this
graph may represent an economy where there is very small overlapping between produc-
tion teams. Compared to a ring lattice, a caveman network shares the feature of a large
average path length, but their local structures are very different.

Finally, we consider a variation of the caveman graph where some nodes are randomly
rewired. Figure 3 (upper right) shows an example, with 25 individuals, 5 local clusters, and
rewiring probability of 0.5. Rewiring decreases average path length making the network
more connected.

In our benchmark economy (experiment 1), the network consists of ring lattice with
N = 10, 000 and |W| = 40. In experiment 5, we modify this network structure by chang-
ing the value of the parameter |W| and by considering the other three types of networks.

Epidemiological parameters for COVID-19. We let π−A = 1/6 (i.e., average incubation
period of 6 days), and π+A = 1/7 (i.e., 7 days of average waiting time to recovery if no
symptoms).

For the recovery of symptomatic-undiagnosed individuals (state SU ), we set π+SU =
1/14, i.e., 14 days of average waiting time to recovery after developing symptoms. Pa-
rameter π−SU is set to match a mortality rate of 10% for these undiagnosed (untreated)
individuals. That is, π−SU/π+SU = 10/90, and this implies π−SU = 0.0079.

For the recovery of symptomatic-diagnosed individuals (state SD), we set π+SD =
1/10, i.e., 10 days of average waiting time to recovery with diagnosis and treatment.
Parameter π−SD is set to match a mortality rate of 5% for these diagnosed (treated) indi-
viduals. That is, π−SD/π+SD = 5/95, and this implies π−SD = 0.0053.

Production function. We consider that γ(0) = γ(1) = 0 such that the production function
is Yi = α(ai) + β(ai, 0) n

(a=0)
i + β(ai, 1) n

(a=1)
i , where n(a=0)

i is the number of other
members physically present in the workplace, and n(a=1)

i is the number of those working
from home. The selection of the parameters α(0), α(1), β(0, 0), β(0, 1), β(1, 0), and
β(1, 1) is based on the following conditions that relate these parameters with the amount
of output at full capacity, F .

a. Full capacity output: everybody works outside: α(0) + β(0, 0) |W| ≡ F .
b. Own individual works outside, team members work at home: α(0) + β(0, 1)|W| =

0.40 F .
c. Own individual works at home, team members work outside: α(1) + β(1, 0)|W| =

0.35 F .
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d. Everyone works from home: α(1) + β(1, 1)|W| = 0.20 F .
e. Own individual works outside, all members inactive: α(0) = 0.20 F .
f. Own individual works at home, all members inactive: α(1) = 0.05 F .

It is straightforward to verify that conditions (a) to (f) imply that function β(a, a′) is:
monotonic in its two arguments, i.e., β(0, 0) > β(1, 0) and β(0, 0) > β(0, 1); and super-
modular, i.e., β(0, 0)− β(0, 1)− β(1, 0) + β(1, 1) > 0.

The value for full capacity output F is chosen such that the probability of working at
home when there is zero risk of infection and all the team members are working outside is
0.5%. That is, Λ(α(1) + β(1, 0)|W| − α(1)− β(0, 0)|W|) = 0.005, and given conditions
(a) to (f), this implies that Λ(−0.65F ) = 0.005, or equivalently, F = 8.1435.

Difference in present values of healthy and infected. The parameter δ [W (H)−W (AU)]
– that captures the difference between the present values of being healthy and being in-
fected – is chosen such that an individual with no active team members and with prob-
ability one of getting infected chooses working at home with probability 99%. That is,
Λ(α(1) − α(0) +[β(1, 1) − β(0, 1)]|W| +δ [W (H)−W (AU)]) = 0.99. The daily dis-
count factor δ can be interpreted as equal to one.

Checking for equilibrium uniqueness. We have checked the sufficient condition for equi-
librium uniqueness presented in equation (22). Given the model parameters, the upper
bound for the derivative of the equilibrium mapping, Ψ′t is strictly smaller than one. This
implies that for every period t and for all our experiments, the equilibrium value ofQt(H̃)
is unique.

3.2. Results

3.2.1. Experiment 1: No interventions

Figure 4 presents the simulated paths of endogenous variables in our benchmark sce-
nario with a ring network, without testing, and without subsidies.

Number of new infections per day (bottom row, column 1) and cumulative share of infected
individuals (row 1, column 4). During the first 10 days, the rate of infection increases very
rapidly. It then slows down mainly due to the prominent response of self-confinement. By
day 80 practically the whole population has got infected. At its peak, the number of new
infections per day reaches 400 (4% of the total population).

Probability of confinement (top row, column 1). This probability responds endogeneously
– with some lag – to the rapid expansion of the virus. The response is quite promptly and
has a peak at day 10 when about 15% of the workers decide (voluntarily) to be confined,
and then declines slowly as daily new cases taper off.

Share of deceased (top row, column 2) and share of immune (top row, column 3). The
rapid expansion of the virus generates a fast convergence to the new steady-state. This
steady-state is practically achieved after only 130 days. The share of deaths is slightly
above 5%.

Aggregate output (bottom row, column 2). The long-run (permanent) effect of the virus
on aggregate output is a reduction by 7.5%. This long-run effect is due to 5% reduction
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Figure 3: Examples of Network Structures (25 individuals)
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in the labor force (deaths) together with the complementarity in the production function.
The steady-state amount of output is reached after 130 days periods, and it follows after
a very deep recession that lasts approximately 10 days and in which output becomes 75%
of its full capacity.

3.2.2. Experiment 2: Herd immunity

Figures 5 presents the results for experiment 2 where everything is the same as in our
benchmark except that at period t = 1 the share of immune individuals is 67%.

The goal of this experiment to show the value of immunity. We can interpret this im-
munity as the result of vaccination. We can also interpret it as a second wave of the virus
that arrives once a substantial proportion of the population is already immune because of
previous recovery after infection. The evolution of all the endogenous variables is dra-
matically different than under the benchmark scenario. The diffusion of the virus is very
slow. The number of infected individuals per day is always lower than 30 and the effect
on output is negligible. Herd immunity has a nonlinear effect on the diffusion of the virus.
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3.2.3. Experiment 3: Subsidy to work from home

In experiment 3, we modify the benchmark scenario by including a subsidy to work
from home. We implement experiments for three different values of the subsidy: 10%,
20%, and 30% of the full capacity output. That is, τ(0) = 0 (no subsidy or tax for working
outside), and τ(1) = 0.1F , or 0.2F , or 0.3F , respectively.

Figure 6 shows the effects of each subsidy rate with respect to the benchmark. The
subsidy – even at 10% which is not large as a percentage of the full salary – has a very
strong positive effect on confinement decisions, especially during the peak of the virus
expansion. At this peak, the probability of working at home increases from 15% without
the subsidy to about 30%. It has also an important effect the total output, driven by work-
ers’ voluntary confinement decision. With 10% subsidy, the deepest point of the recession
marks 62% of the output under full capacity. As expected, all these effects become larger
when the subsidy rate increases.

3.2.4. Experiment 4: Testing

In experiment 4, we modify the benchmark scenario by introducing testing, both to
symptomatic individuals – with a probability λS = 80% – and to asymptomatic individu-
als – with three experiments where the probability λA takes the values 2%, 10%, and 20%,
respectively.

Figure 7 presents the effects with respect to the benchmark. Very interestingly, we find
that the effects of introducing testing are basically the complements of the subsidy to con-
finement. Testing has practically zero effect on the number of infections per day. However,
it has an important effect on the timing of confinement and on output, and especially in the
number of deaths. Testing identifies infected individuals and removes them from the labor
force. Due to complementarity in the production process, this has a positive incentive on
confinement. Now, the peak of confinement occurs earlier than in the benchmark. This
has also an effect on output: the recession is slightly not as deep and it is substantially
shorter. The long run effects are also smaller, due to the savings of lives.

3.2.5. Experiment 5: Modifying the network structure

Here we include a set of experiments to illustrate how the structure of the social/production
network influences virus diffusion and its economic impact. Very interestingly, we show
that the network structure not only has an impact on the infection status of the population,
but it also affects individuals’ confinement decisions.

Figure 8 presents the simulated paths of the endogenous variables compared tothe
benchmark model. The small world network (green curve) is generated from the same
ring lattice as the benchmark but with a re-wiring probability of 1% using the Watts-
Strogatz algorithm. This modification of the network (which reduces the average path
length of the network) brings a very different virus diffusion. It starts off slower than the
benchmark case, however the momentum of the virus takes much longer before it tapers
off, leading to a faster trajectory to get the whole population infected. The response of
the confinement decision also paints a very different picture compared to the benchmark
case. Only a tiny fraction of workers decide to work from home.

The ring lattice with a smaller degree – |W| = 20 instead of |W| = 40 – also paints a
different picture compared to the benchmark. In this network, with larger social distance,
the virus diffuses more slowly. As a result, the share of individuals who choose to work
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Figure 6: Experiment 3: Subsidy to Work from Home. Differences with Benchmark

0 50 100 150

0.
3

0.
5

0.
7

0.
9

output

Day

G
D

P

No Interv
10% subsidy
20% subsidy
30% subsidy

0 50 100 150

0.
0

0.
2

0.
4

0.
6

Share of Confined Individuals Q(t)

Day

Q
t

No Interv
10% subsidy
20% subsidy
30% subsidy

0 50 100 150

0
10

0
20

0
30

0
40

0

new infectious cases per day

Day

ca
se

s

No Interv
10% subsidy
20% subsidy
30% subsidy

0 50 100 150

0
10

0
30

0
50

0

Total Death

Day

To
ta

l D
ea

th

No Interv
10% subsidy
20% subsidy
30% subsidy

206

This content downloaded from 
�������������174.95.98.51 on Thu, 24 Jun 2021 15:51:16 UTC�������������� 

All use subject to https://about.jstor.org/terms



Victor Aguirregabiria, Jiaying Gu, Yao Luo, and Pedro Mira

Figure 7: Experiment 4: Testing. Differences with Benchmark
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Figure 8: Experiment 5: Network Structures. Differences with Benchmark

0 50 100 150

0.
2

0.
4

0.
6

0.
8

1.
0

output

Day

G
D

P

Ring lattice (40)
Caveman
Small−world
Caveman−rewired
Ring lattice (20)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

Share of Confined Individuals Q(t)

Day

Q
t

Ring lattice (40)
Caveman
Small−world
Caveman−rewired
Ring lattice (20)

0 50 100 150

0
20

0
40

0
60

0
80

0
10

00

new infectious cases per day

Day

ca
se

s

Ring lattice (40)
Caveman
Small−world
Caveman−rewired
Ring lattice (20)

0 50 100 150

0
10

0
20

0
30

0
40

0
50

0

Total Death

Day

To
ta

l D
ea

th

Ring lattice (40)
Caveman
Small−world
Caveman−rewired
Ring lattice (20)

from home is smaller. Although eventually all population gets infected, this occurs much
more slowly. Output also gets a much smaller hit.

The caveman network (red curve) shows also different diffusion dynamics than the
benchmark. Since individuals are strongly connected within the local clusters, the virus
spreads very swiftly in the beginning. But at the same time, there is also a much stronger
response to work from home, which then leads to a slower spread of the virus compared to
the benchmark case. In fact, the steady state reveals that less than 30% of the population
gets infected before the virus dies off. The economy is hit very hard in the beginning given
the large share of workers work from home, but it picks back up much faster and since the
death toll is much smaller, the steady state of the output settles at a better position after
the pandemic.

The variant of the caveman network, with a rewiring probability of 0.5 (blue curve)
depicts a similar dynamics. Being more connected compared to the vanilla caveman net-
work, it takes longer before the virus settles at a slow growth state and the total population
gets infected is about 45%. The response in confinement decision as well as the output
trajectory behaves quite similarly.

4. CONCLUSIONS

In this paper, we present a framework that combines an epidemiological model of
COVID-19 diffusion with a dynamic game of network production and social interactions.
The model can be used to study individuals’ mobility, working and consumption deci-
sions during the epidemic. Simulations based on a simple calibrated version of the model
illustrate the potential of the framework as a tool to evaluate economic and health impacts
of public policies such as subsidies to home work and testing. The simulations also show-
case the important roles of behavioral responses and the structure of production networks
for the dynamics of virus diffusion and output.
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