
ALMOST PARAMETRIC SMOOTHING

ROGER KOENKER AND JIAYING GU

Abstract. Shape constraints can be a powerful aid in nonparametric function
estimation, often regularizing problems without any pesky choice of tuning pa-
rameters. In some special circumstances they also achieve a remarkable, adaptive,
nearly parametric convergence rate. After reviewing some prominent examples of
this phenomenon, we briefly consider a closely related problem arising in the context
of monotone single index models for conditional quantile functions.

1. Introduction

In regular, finite-dimensional parametric models we expect that estimated param-
eters converge at a rate proportional to 1/

√
n for sample size n. Nonparametric

estimation of densities and regression functions is generally more challenging, and
this is typically reflected in slower rates of convergence. Of course, higher order ker-
nel density estimation enables one to achieve nearly parametric rates at the price of
producing embarrassing estimates that may violate the basic non-negativity require-
ment for estimated densities; consequently they will not be considered further here.
Instead, we will focus on settings where shape constraints enable nearly parametric
convergence in various related smoothing problems.

2. Monotone Density Estimation

The leading example of the phenomenon that we wish to study is the celebrated
monotone density estimator of Grenander (1956). Given independent observations,
X1, · · · , Xn from a distribution F0 with a monotone decreasing density f0, the classical
prescription for the Grenander estimator is characterized as the left derivative of the
least concave majorant of the empirical distribution function,

Fn(x) = n−1

n∑
i=1

I(Xi ≤ x).

This is illustrated in Figure 1 where the piecewise linear least concave majorant,
yields a piecewise constant density estimate. An especially appealing feature of this
estimator is that it is fully automatic, not depending on any choice of tuning pa-
rameters. The location and mass associated with the resulting “histogram bins” are
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Figure 1. Grenander Estimator: The least concave majorant of the
empirical distribution function in the upper panel, when differentiated
yields the piecewise constant density estimate in the lower panel.

determined entirely from the data. This can be seen geometrically from the figure: it
is as if we have stretched a string over the empirical distribution function, and once
this is done the left derivative is determined. This may seem rather ad hoc on first
encounter, so it is perhaps comforting to find that the estimator can also be viewed
as a nonparametric maximum likelihood estimator.

Consider the shape constrained density estimation problem,

max
f
{
∫

log f(x)dFn(x) | f decreasing,

∫
f(x)dx = 1}.

Lemma 2.2 of Groeneboom and Jongbloed (2014) establishes that the solution to
this problem is the Grenander estimator provided that we adopt the convention that
f̂(x) = 0 for x < 0. Jumps in f̂ occur at the order statistics of sample and at the
origin. An alternative formulation also grounded in maximum likelihood involves
writing our target density, f , as a scale mixture of uniforms,

max
G∈G
{
∫

log f(x)dFn(x) | f(x) =

∫
t−1I(0 ≤ x ≤ t)dG(t)},

where G constitutes the set of proper distribution functions. In this case solutions
Ĝ assign mass to a few discrete order statistics that then yield a mixture density, f̂ ,
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that is equal to the previous solutions.1 The scale mixture formulation automatically
imposes the constraint that the mixture density is supported on the positive half-line.

There is an extensive literature on the asymptotic behavior of the Grenander esti-
mator beginning with Prakasa Rao (1969), who established that, pointwise,

n1/3(f̂n(x0)− f(x0))/[4f(x0)f ′(x0)]1/3 ; Z

where Z is the maximizer of two sided Brownian motion minus a parabola,

Z = argmaxt{W (t)− t2}

The O(n−1/3) rate may be somewhat disappointing, however it should be kept in
mind that this result applies to the entire class of decreasing densities without the
(second-order) differentiability conditions routinely assumed by kernel estimators to
achieve their familiar O(n−2/5) rate.

Global convergence of the Grenander estimator was studied by Groeneboom (1985),
who established that, for any bounded decreasing density, f , with compact support
on [a,∞) and continuous first derivative,

lim
n→∞

n1/3Rn(f, f̂n) = K

∫ ∞
a

|f(x)f ′(x)/2|1/3dx

where Rn(f, f̂n) = Ef
∫
|f(x) − f̂n(x)|dx. Here, the constant K is more explicitly

expressed as 2E|V (0)| ≈ 0.82 where

V (a) = sup{t ∈ R | W (t) = (t− a)2 = max!}

and W (t) is be a two sided Brownian motion on R. Balabdaoui, Jankowski, Pavlides,
Seregin, and Wellner (2011) provide a more refined analysis of the local behavior at
zero including the possibility of an unbounded target density. As noted by Birgé
(1989) uniformity is still problematic, so it is of considerable interest to have non-

asymptotic risk bounds for Rn(f, f̂n). To this end, Birgé shows that the piecewise
constant, histogram-like nature of the Grenander estimator is adaptive in the sense
that it tends to select an optimal partition for the binning strategy of the histogram.
For smooth target densities this still yields a O(n−1/3) convergence rate, however
in the very special case that the target density is piecewise constant with a finite
number of jumps, the results imply that f̂n achieves the parametric rate, O(n−1/2).
The piecewise constant, histogram-like nature of the Grenander estimator is adaptive
in the stronger sense that it selects a binning strategy suited to histogram nature of
the true density as if it were a parametric object, which of course in a sense it is.
Birgé is very careful to stress the special character of this result, so it may be easy
to lose sight of this truly remarkable feature. In contrast to adaptive kernel density
estimation that require a pilot estimate to guide the choice of the local bandwidth

1For further computational details on these alternative formulations see demo(Grenander) in

the R package REBayes.
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selection, the Grenander estimator constitutes its own pilot estimator, automatically
selecting bins without the benefit of any preliminary bandwidth selection. 2

3. Unimodal Density Estimation

This parametric rate performance of the Grenander estimator, however special its
circumstances may be, turns out to have interesting extensions and counterparts in a
wide variety of other shape constrained smoothing problems. For unimodal densities
with known mode results for the Grenander estimator can be immediately extended,
and with some further effort an estimated mode can be accommodated. Closely re-
lated is the problem of estimating strongly unimodal, i.e. log-concave, densities. This
is also a shape constrained problem susceptible to a maximum likelihood treatment,

max
f
{

n∑
i=1

log f(xi) | log f concave,

∫
f(x)dx = 1},

and can be reformulated as the convex optimization problem,

min
g
{

n∑
i=1

g(xi) | g ∈ K,
∫
eg(x)dx = 1},

where K denotes the closed convex cone of convex functions. Solutions, ĝn, are now
piecewise linear with knots at the data points, so f̂n = eĝn is piecewise exponen-
tial, and vanishes off the empirical support of the observations. Recently Kim and
Samworth (2016) have proved that f̂n achieves the minimax rate of convergence,

inf
fn

sup
f0∈F

Ef0d2
H(fn, f0) � n−4/5,

where d2
H(f, g) =

∫
(
√
f(x) −

√
g(x))2dx is the squared Hellinger distance distance,

F denotes the set of all upper semi-continuous log concave densities, and fn is any
estimator of f0. Again, it may be tempting to ask, “So what? Can’t I achieve this
same rate with conventional kernel methods?” When the target density f0 is strictly
log concave the shape constraint is eventually rendered irrelevant since any reasonable
estimator would remain in the interior of the constraint set. What if, instead, f0, lies
in the boundary of the constraint set? In the log concave case this would mean
that g0 = log f0 was itself piecewise affine with k distinct pieces. In such k-affine
cases, Kim, Guntuboyina, and Samworth (2018) establish that the non-parametric

maximum likelihood estimator, f̂n achieves a nearly parametric rate of convergence,
that is there is a universal constant, C, such that for every n ≥ 2 and every k-affine,

2Indeed, this may lead one to wonder whether, in circumstances where the monotonicity assump-

tion is plausible, it might be advantageous to use the Grenander f̂n as a pilot estimator, simply
convolving it with a smooth density if its piecewise constant appearance was deemed unattractive.
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f0,

Ef0d2
H(fn, f0) ≤ Ck

n
log5/4 n.

Thus, again without any prior knowledge about the number of affine pieces, the
NPMLE achieves the almost parametric rate ofO(1/

√
n), without any required tuning

parameter selection. In fact, something considerably more general is proved for f0

that are nearly k-affine. It would also be possible to generalize to weaker forms of
concavity as in Koenker and Mizera (2018), but we will resist going into the details.
Instead, we will turn our attention to estimation of a general class of mixture models.

4. Nonparametric Estimation of Mixture Densities

Many statistical problems can be formulated as parametric mixtures, leading ex-
amples are the Gaussian location mixture,

f(x) =

∫
ϕ(x− θ)dG(θ)

and the Gaussian scale mixture,

f(x) =

∫
θ−1ϕ(x/θ)dG(θ).

Given a sample of independent observations, X1, X2, · · · , Xn, we can consider these as
models with Xi ∼ N (θi, 1) and Xi ∼ N (0, θ2

i ) respectively. We would like to estimate
the mixing distribution G when the observations are assumed exchangeable. Kiefer
and Wolfowitz (1956) proposed estimating G by nonparametric maximum likelihood,

(1) max
G∈G

{
n∑
i=1

log f(Xi) | f(x) =

∫
ϕ(x, θ)dG(θ)

}
,

and proved consistency of the resulting Ĝ. Computation by the EM algorithm was
suggested by Laird (1978), but remained quite challenging. Modern convex optimiza-
tion methods provide a much more efficient and scalable approach to computation as
shown in Koenker and Mizera (2014). However, many open problems remain regard-
ing the statistical performance of these methods.

An important step forward in this respect is the recent work of Saha and Guntuboy-
ina (2019) who consider the Gaussian location mixture model in Rd. They evaluate
performance relative to the oracle Bayes estimator that knows the empirical measure
of the true θ’s, Gn(t) = n−1

∑n
i=1 I(t − θi). Their Proposition 2.3 establishes that

when Gn is discrete, supported on a set of cardinality k, there exists a constant Cd,
such that,

Ed2
H(f̂n, fGn) ≤ Cd

(
k

n
(
√

log n)d+(4−d)+

)
.
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It follows easily this is the minimax attainable rate. Again, we have an almost
parametric convergence rate up to the logarithmic factor for the nonparametric MLE
of the mixture density.

5. Shape Constrained Regression

It should not come as a big surprise that shape constraints can also play an im-
portant role in regression as well as in density estimation. Most of the literature has
focused on the least squares fidelity criterion. The simplest setting is the isotonic
regression model,

Yi = θi + ui i = 1, 2, · · · , n,
where the θi are assumed to satisfy θ1 ≤ θ2 ≤ · · · ≤ θn. Implicitly, we can think of
this model as one in which we observe Yi’s at a sequence of increasing design points.
The apparently more general formulation of the model with Yi = g(xi) + ui reduces
to the former model under general convex loss; if the observations are not ordered
in the covariate, xi, we can simply reorder the Yi’s according to the order of the xi’s
and proceed as before. Under the monotonicity constraint solutions are piecewise
constant with jumps at the design points and loss depends only on the estimated
function values at these design points.

For iid Gaussian ui with variance σ2 < ∞ the nonparametric MLE can again be
formulated as a convex optimization problem,

min
θ

{
n∑
i=1

(Yi − θi)2 | θ ∈ Kn

}
where Kn is the convex polyhedral cone of nondecreasing sequences. This problem has
a long history going back to Brunk (1955) and perhaps even before. Computation of
solutions are typically carried out with the pool-adjacent-violaters algorithm (PAVA),
although various modern variants of quadratic programming could also be used.

Zhang (2002) showed that the empirical risk of the nonparametric MLE, θ̂n

Rn = n−1

n∑
i=1

(θi − θ̂i)2 ≤ C

[(
σ2Vn
n

)2/3

+
σ2 log n

n

]
,

where Vn = θn − θ1 and C is a fixed constant. However, more recent refinements
establish that improvement over this O(n−1/3) rate can be achieved under the special
circumstances that the θi are piecewise constant with a small number, k, of pieces.
In that case Chatterjee, Guntuboyina, and Sen (2015) prove that,

Rn ≤ inf
k

(
4σ2(1 + k)

n
log

en

1 + k

)
.

Thus, up to the log factor we again have almost parametric convergence, determined
by the number of distinct piecewise constant elements in the target function. And
again it is worth stressing that adaptation is achieved over the number and locations of
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these pieces without any intervention of tuning parameters. When the monotonicity
is misspecified there is obviously a bias effect and this is also characterized in the
general formulation of this result.

When the monotonicity constraint is replaced by a convexity (or concavity) con-
straint the nonparametric MLE under Gaussian error is piecewise linear with knots at
the observed design points. In the simplest setting with equally spaced design points
this imposes the constraint that second differences of θi’s are nonnegative. Guntuboy-
ina and Sen (2015) and Chatterjee, Guntuboyina, and Sen (2015) prove that when the
target regression function is k-affine, that is piecewise linear with k distinct pieces,
the NPMLE again achieves an adaptive parametric rate of convergence up to a log
factor.

Although the prior literature has focused exclusively on the least squares, iid Gauss-
ian noise setting, as has most of the PAVA literature, there is nothing that prohibits
us from entertaining other fidelity criteria. A natural alternative is the family of
quantile loss functions that yield estimates of the conditional quantile functions of
the response. Again, we have a convex optimization problem,

min

{
n∑
i=1

ρτ (yi − g(xi)) | g ∈ K

}
where ρτ (u) = u(τ − I(u < 0)), and K is the closed convex cone representing either
monotone, convex or concave functions. An implementation of such estimators is
available in the R package quantreg with the function rqss. In contrast to the least
squares version of PAVA, the algorithmic complexity of the quantile implementation
via interior point methods has not be carefully analyzed, but sparsity of the under-
lying constraint matrix assures efficient practical performance. This implementation
expands the formulation in several respects: (i) there is an option to impose further
smoothness on the shape constrained estimate, (ii) general, unequally spaced, design
points are permitted, and (iii) additive models with several shape constrained com-
ponents are permitted. To elaborate briefly on the first point, the general form of
the rqss function permits the user to impose a total variation penalty on the first
derivative of the fitted function,

TV (g′) =

∫
|g′′(x)|dx

controlled by a tuning parameter λ. When λ is sufficiently large the ĝn is constrained
to be linear, while when λ is sufficiently close to zero the TV penalty has no effect
and only the shape constraint determines the fit.

From a computational viewpoint the polyhedral cone and total variation constraints
are especially appealing in the quantile regression setting because they maintain the
linear programming structure of the estimation problem. Due to the relative sparsity
of the design matrices in such problems modern interior point algorithms are quite
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efficient even for large scale problems. It should be noted that the form of the solu-
tions, that is whether they are piecewise constant, piecewise linear, etc., is entirely
determined by the form of the constraints and in particular by the order of the dif-
ferential operator appearing there. Thus, if g ∈ K requires that Dg ≥ 0 to impose
monotonicity then solutions will be piecewise constant. If instead D2g ≥ 0 is imposed
to achieve convexity then solutions will be piecewise linear. Likewise, total variation
penalties on g, itself, yield piecewise constant solutions, while total variation penal-
ties on Dg, thereby controlling the L1 norm of D2g yield piecewise linear solutions.
Although such methods have a long history in imaging and actuarial science they
only have become widely appreciated in statistics through the relatively recent work
of Kim, Koh, Boyd, and Gorinevsky (2009) and Tibshirani (2014).

We conjecture that these shape constrained conditional quantile function estimators
enjoy the same almost parametric convergence as their least squares counterparts and
hope to report on this at a later time.

6. Shape Constrained Transformation Models

This brings us to our final category of shape constrained estimators: transformation
models take a variety of forms, but typically they have a single index structure like,

(2) EYi|Xi = Ψ(X>i β).

The covariates and the parameter, β ∈ Rp are wrapped in a function Ψ : R → R
that may be parametric or nonparametric. Motivated by the revival of interest in the
Grenander estimator, there has been increased interest in transformation models with
monotonic Ψ. Clearly, when p = 1 the β parameter is irrelevant and with Ψ monotonic
we are back to the methods described in the previous section. When p > 1 we can
regard such models as an heroic attempt to circumvent the curse of dimensionality by
assuming a simple form for the way the covariates enter the model while preserving
some semblance of nonlinear structure. There are a variety of closely related models,
some of which replace Ψ on the right hand side by some transformation of the response
variable itself. The monograph of Carroll and Ruppert (1988) provides a systematic
treatment of many of these models, both parametric and nonparametric.

Recently, Balabdaoui, Groeneboom, and Hendrickx (2019) and Groeneboom and
Hendrickx (2019) have very thoroughly explored various approaches to estimating the
model (2). They argue that it is preferable to avoid the direct profiling approach and
focus on methods that find approximate zeros of the score (gradient) equations. It
is clear that the vector β is identified only up to scale, so it is natural to impose the
constraint that its Euclidean norm is one, ‖β‖ = 1. This can be accomplished in
a variety of ways, either by transformation to spherical coordinates, or by adding a
Lagrangian term. They employ the former scheme for their asymptotics, but prefer
the latter from a practical, computational standpoint. Another option is to simply
set one of coordinates of β equal to 1 or -1.
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A drawback of the conditional mean formulation of the model, one that also afflicts
a much broader class of nonlinear transformation models for conditional means, is
the necessity of assuming that in the additive error formulation of the model,

(3) Yi = Ψ(X>i β) + Ui,

there is full independence between the observed covariates, Xi, and the Ui. One way
to circumvent this requirement is to replace the mean formulation by a conditional
quantile formulation,

(4) QY |X(τ |X) = Ψτ (X
>βτ ).

The quantile formulation also renders superfluous the unsightly moment conditions
that appear inevitably in the analysis of the mean formulation. Such models were first
considered by Chaudhuri, Doksum, and Samarov (1997) who provide a very thorough
motivation and contextualization for this class of models. Drawing on earlier work of
Chaudhuri they propose an average derivative estimator for β based on nonparametric
kernel weighted quantile regression.

When the τth conditional quantile function of Y given X is postulated to be a
monotone function of a linear predictor in Xi, as seems plausible in many applications,
we can try to exploit shape constrained methods to estimate both Ψ and β. Since
quantiles are equivariant to monotone transformation, interpretation of the family of
such models is also much more straightforward than their mean counterparts. Our
initial computational strategy arose immediately from the equivariance property of
the quantiles, (4) implies,

(5) QΨ−1
τ (Y )|X(τ |X) = X>βτ .

Since this linear quantile regression formulation can be efficiently estimated even for
high dimensional β, a simple iterative strategy in which alternate back and forth
from estimation of Ψ to estimation of β seems attractive. At each iteration we can
modify the resulting β so that it has norm one. Given a β, an estimate of Ψ can
be obtained by solving the monotone quantile regression problem described above.
Both steps are linear programs. The biconvex structure of the problem is common to
many mathematical contexts, see Aumann and Hart (1986) and Gorski, Pfeuffer, and
Klamroth (2007) further details. Unfortunately, there is no general assurance that
such an iterative procedure converges to a global optimum. Indeed, contrary to our
initial, naive expectations, it performed abysmally.

Thus, following the lead of Groeneboom and Hendrickx (2019), but not without
some trepidation, we turned to global methods of optimization, in particular the
patterned search method of Hooke and Jeeves (1961). Convergence of such pattern
search algorithms to a stationary point was established by Torczon (1997). An R
implementation is available from the optimx package of Nash and Varadhan (2011),
and an Rcpp implementation available from the github site of Piet Groeneboom.
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Figure 2. Single Index Median Regression Monotone Transformation
Model: The plotted points depict the pairs (Ψτ (x

>
i β0), yi). Three real-

izations for difference sample sizes of the final estimate of the monotone
Ψ̂n based on five Gaussian covariates in the single index. The true Ψ
is depicted in black, while the estimate is in red.

Provisionally, we have experimented with the former implementation which has per-
formed quite well. In Figure 2 we illustrate three realizations from a sample in which
the true Ψ is piecewise constant with only one jump; there are 5 covariates drawn as
independent standard Gaussians. It is apparent from this figure that the location and
magnitude of the jump in Ψ is quite accurately estimated, this is hardly surprising
in view of the fact that all the information about the linear predictor is contained in
the neighborhood around this jump. Estimation of the level of Ψ before and after the
jump is more problematic, which is again not surprising given that in the absence of
a jump we would not be able to consistently estimate the linear index at all.

To begin to explore the asymptotic behavior of our proposed estimator it is useful
to reconsider the case for a known transformation, Ψ. As described in Koenker (2005)
Section 4.4, if we adopt the model,

QY i|Xi=xi(τ |xi) = g(xi, β0),

it is natural to try to estimate β0 by,

β̂n = argminb∈B
∑

ρτ (yi − g(xi, b)).
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We emphasize the verb “try” since optimization need no longer be an assured attack
on a convex problem with a unique solution. In keeping with the vast literature on
nonlinear least squares we will assume that the domain B is compact. In addition
we will assume that the conditional distribution functions Fi of Yi|Xi are absolutely
continuous with continuous derivatives fi(ξi) at the points ξi = g(xi, β0), and the
following conditions on design.

G1.: There exist constants k0, k1 and n0 such that, for β1, β2 ∈ B and n > n0

k0 ‖ β1 − β2 ‖≤ (n−1

n∑
i=1

(g(xi, β1)− g(xi, β2))2)1/2 ≤ k1 ‖ β1 − β2 ‖ .

G2.: There exist positive definite matrices D0 and D1(τ) such that with ġi =
∂g(xi, β)/∂β|β=β0 .

(i)Eġiġ>i = D0

(ii)Efi(ξi)ġiġ>i = D1(τ)

(iii) max
i=1,...,n

‖ ġi ‖ /
√
n→ 0.

Under these conditions, it can be shown that we have the Bahadur representation,

√
n(β̂n − β0) = D−1

1

1√
n

n∑
i=1

ġiψτ (ui) + op(1)

where ψτ = ρ′τ and ui = yi − g(xi, β0). Consequently,
√
n(β̂n − β0) ; N (0, τ(1− τ)D−1

1 D0D
−1
1 ),

for further details see Oberhofer and Haupt (2016).
In the special case of the single index model, g(x, β) = Ψ(x>β) and β ∈ B is

replaced by β ∈ Sp−1 ≡ {b ∈ Rp | ‖b‖ = 1}. Thus, ġ = ∂g/∂β becomes JΨ̇X where J
denotes the Jacobian of the transformation that maps β into its (p− 1)-dimensional
counterpart. When Ψ is strictly increasing as is commonly assumed in the literature,
this returns the expressions for D0 and D1 to something closely resembling their
linear quantile regression equivalents except for the weighting factors from the Ψ̇i

terms and the dimension reduction effect of the Jacobian terms. Inverses in the
sandwich formulae now of course need to be interpreted as generalized inverses due
to the dimension reduction.

At this point the obvious question is: How does all this change when Ψ is estimated?
Surprisingly, the answer would seem to be: very little. Following the arguments of
Balabdaoui, Groeneboom, and Hendrickx (2019) and several prior authors cited there
in the mean regression setting, this would entail replacing XX> in the modified ex-
pressions for D0 and D1 by the conditional covariance Cov(X|X>β = x>β). This

change reflects a reduction in the precision of the estimator β̂n. For smoothly in-
creasing Ψ, as in the least squares theory, it is inevitable that we would obtain cube
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root convergence for Ψ̂n. A much more intriguing question, but a considerably more
difficult one, is this: Can

√
n convergence of Ψ̂n be salvaged if we are willing to as-

sume that the true Ψ is piecewise constant? The highly accurate estimates of the
jump component of Ψ in Figure 2 offers a hint that this may indeed be plausible.
Unfortunately, we must leave this intriguing problem for future research.
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