ALMOST PARAMETRIC SMOOTHING

ROGER KOENKER AND JIAYING GU

Abstract

Shape constraints can be a powerful aid in nonparametric function estimation, often regularizing problems without any pesky choice of tuning parameters. In some special circumstances they also achieve a remarkable, adaptive, nearly parametric convergence rate. After reviewing some prominent examples of this phenomenon, we briefly consider a closely related problem arising in the context of monotone single index models for conditional quantile functions.

1. Introduction

In regular, finite-dimensional parametric models we expect that estimated parameters converge at a rate proportional to $1 / \sqrt{n}$ for sample size n. Nonparametric estimation of densities and regression functions is generally more challenging, and this is typically reflected in slower rates of convergence. Of course, higher order kernel density estimation enables one to achieve nearly parametric rates at the price of producing embarrassing estimates that may violate the basic non-negativity requirement for estimated densities; consequently they will not be considered further here. Instead, we will focus on settings where shape constraints enable nearly parametric convergence in various related smoothing problems.

2. Monotone Density Estimation

The leading example of the phenomenon that we wish to study is the celebrated monotone density estimator of Grenander (1956). Given independent observations, X_{1}, \cdots, X_{n} from a distribution F_{0} with a monotone decreasing density f_{0}, the classical prescription for the Grenander estimator is characterized as the left derivative of the least concave majorant of the empirical distribution function,

$$
\mathbb{F}_{n}(x)=n^{-1} \sum_{i=1}^{n} I\left(X_{i} \leq x\right)
$$

This is illustrated in Figure 1 where the piecewise linear least concave majorant, yields a piecewise constant density estimate. An especially appealing feature of this estimator is that it is fully automatic, not depending on any choice of tuning parameters. The location and mass associated with the resulting "histogram bins" are

[^0]

Figure 1. Grenander Estimator: The least concave majorant of the empirical distribution function in the upper panel, when differentiated yields the piecewise constant density estimate in the lower panel.
determined entirely from the data. This can be seen geometrically from the figure: it is as if we have stretched a string over the empirical distribution function, and once this is done the left derivative is determined. This may seem rather ad hoc on first encounter, so it is perhaps comforting to find that the estimator can also be viewed as a nonparametric maximum likelihood estimator.

Consider the shape constrained density estimation problem,

$$
\max _{f}\left\{\int \log f(x) d \mathbb{F}_{n}(x) \mid f \text { decreasing, } \int f(x) d x=1\right\} .
$$

Lemma 2.2 of Groeneboom and Jongbloed (2014) establishes that the solution to this problem is the Grenander estimator provided that we adopt the convention that $\hat{f}(x)=0$ for $x<0$. Jumps in \hat{f} occur at the order statistics of sample and at the origin. An alternative formulation also grounded in maximum likelihood involves writing our target density, f, as a scale mixture of uniforms,

$$
\max _{G \in \mathcal{G}}\left\{\int \log f(x) d \mathbb{F}_{n}(x) \mid f(x)=\int t^{-1} I(0 \leq x \leq t) d G(t)\right\}
$$

where \mathcal{G} constitutes the set of proper distribution functions. In this case solutions \hat{G} assign mass to a few discrete order statistics that then yield a mixture density, \hat{f},
that is equal to the previous solutions. ${ }^{1}$ The scale mixture formulation automatically imposes the constraint that the mixture density is supported on the positive half-line.

There is an extensive literature on the asymptotic behavior of the Grenander estimator beginning with Prakasa Rao (1969), who established that, pointwise,

$$
n^{1 / 3}\left(\hat{f}_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right) /\left[4 f\left(x_{0}\right) f^{\prime}\left(x_{0}\right)\right]^{1 / 3} \leadsto Z
$$

where Z is the maximizer of two sided Brownian motion minus a parabola,

$$
Z=\operatorname{argmax}_{t}\left\{W(t)-t^{2}\right\}
$$

The $\mathcal{O}\left(n^{-1 / 3}\right)$ rate may be somewhat disappointing, however it should be kept in mind that this result applies to the entire class of decreasing densities without the (second-order) differentiability conditions routinely assumed by kernel estimators to achieve their familiar $\mathcal{O}\left(n^{-2 / 5}\right)$ rate.

Global convergence of the Grenander estimator was studied by Groeneboom (1985), who established that, for any bounded decreasing density, f, with compact support on $[a, \infty)$ and continuous first derivative,

$$
\lim _{n \rightarrow \infty} n^{1 / 3} R_{n}\left(f, \hat{f}_{n}\right)=K \int_{a}^{\infty}\left|f(x) f^{\prime}(x) / 2\right|^{1 / 3} d x
$$

where $R_{n}\left(f, \hat{f}_{n}\right)=\mathbb{E}_{f} \int\left|f(x)-\hat{f}_{n}(x)\right| d x$. Here, the constant K is more explicitly expressed as $2 \mathbb{E}|V(0)| \approx 0.82$ where

$$
V(a)=\sup \left\{t \in \mathbb{R} \mid W(t)=(t-a)^{2}=\max !\right\}
$$

and $W(t)$ is be a two sided Brownian motion on \mathbb{R}. Balabdaoui, Jankowski, Pavlides, Seregin, and Wellner (2011) provide a more refined analysis of the local behavior at zero including the possibility of an unbounded target density. As noted by Birgé (1989) uniformity is still problematic, so it is of considerable interest to have nonasymptotic risk bounds for $R_{n}\left(f, \hat{f}_{n}\right)$. To this end, Birgé shows that the piecewise constant, histogram-like nature of the Grenander estimator is adaptive in the sense that it tends to select an optimal partition for the binning strategy of the histogram. For smooth target densities this still yields a $\mathcal{O}\left(n^{-1 / 3}\right)$ convergence rate, however in the very special case that the target density is piecewise constant with a finite number of jumps, the results imply that \hat{f}_{n} achieves the parametric rate, $\mathcal{O}\left(n^{-1 / 2}\right)$. The piecewise constant, histogram-like nature of the Grenander estimator is adaptive in the stronger sense that it selects a binning strategy suited to histogram nature of the true density as if it were a parametric object, which of course in a sense it is. Birgé is very careful to stress the special character of this result, so it may be easy to lose sight of this truly remarkable feature. In contrast to adaptive kernel density estimation that require a pilot estimate to guide the choice of the local bandwidth

[^1]selection, the Grenander estimator constitutes its own pilot estimator, automatically selecting bins without the benefit of any preliminary bandwidth selection. ${ }^{2}$

3. Unimodal Density Estimation

This parametric rate performance of the Grenander estimator, however special its circumstances may be, turns out to have interesting extensions and counterparts in a wide variety of other shape constrained smoothing problems. For unimodal densities with known mode results for the Grenander estimator can be immediately extended, and with some further effort an estimated mode can be accommodated. Closely related is the problem of estimating strongly unimodal, i.e. log-concave, densities. This is also a shape constrained problem susceptible to a maximum likelihood treatment,

$$
\max _{f}\left\{\sum_{i=1}^{n} \log f\left(x_{i}\right) \mid \log f \text { concave, } \int f(x) d x=1\right\}
$$

and can be reformulated as the convex optimization problem,

$$
\min _{g}\left\{\sum_{i=1}^{n} g\left(x_{i}\right) \mid g \in \mathcal{K}, \int e^{g(x)} d x=1\right\}
$$

where \mathcal{K} denotes the closed convex cone of convex functions. Solutions, \hat{g}_{n}, are now piecewise linear with knots at the data points, so $\hat{f}_{n}=e^{\hat{g}_{n}}$ is piecewise exponential, and vanishes off the empirical support of the observations. Recently Kim and Samworth (2016) have proved that \hat{f}_{n} achieves the minimax rate of convergence,

$$
\inf _{f_{n}} \sup _{f_{0} \in \mathcal{F}} \mathbb{E}_{f_{0}} d_{H}^{2}\left(f_{n}, f_{0}\right) \asymp n^{-4 / 5}
$$

where $d_{H}^{2}(f, g)=\int(\sqrt{f(x)}-\sqrt{g(x)})^{2} d x$ is the squared Hellinger distance distance, \mathcal{F} denotes the set of all upper semi-continuous log concave densities, and f_{n} is any estimator of f_{0}. Again, it may be tempting to ask, "So what? Can't I achieve this same rate with conventional kernel methods?" When the target density f_{0} is strictly \log concave the shape constraint is eventually rendered irrelevant since any reasonable estimator would remain in the interior of the constraint set. What if, instead, f_{0}, lies in the boundary of the constraint set? In the log concave case this would mean that $g_{0}=\log f_{0}$ was itself piecewise affine with k distinct pieces. In such k-affine cases, Kim, Guntuboyina, and Samworth (2018) establish that the non-parametric maximum likelihood estimator, \hat{f}_{n} achieves a nearly parametric rate of convergence, that is there is a universal constant, C, such that for every $n \geq 2$ and every k-affine,

[^2]f_{0},
$$
\mathbb{E}_{f_{0}} d_{H}^{2}\left(f_{n}, f_{0}\right) \leq \frac{C k}{n} \log ^{5 / 4} n
$$

Thus, again without any prior knowledge about the number of affine pieces, the NPMLE achieves the almost parametric rate of $\mathcal{O}(1 / \sqrt{n})$, without any required tuning parameter selection. In fact, something considerably more general is proved for f_{0} that are nearly k-affine. It would also be possible to generalize to weaker forms of concavity as in Koenker and Mizera (2018), but we will resist going into the details. Instead, we will turn our attention to estimation of a general class of mixture models.

4. Nonparametric Estimation of Mixture Densities

Many statistical problems can be formulated as parametric mixtures, leading examples are the Gaussian location mixture,

$$
f(x)=\int \varphi(x-\theta) d G(\theta)
$$

and the Gaussian scale mixture,

$$
f(x)=\int \theta^{-1} \varphi(x / \theta) d G(\theta)
$$

Given a sample of independent observations, $X_{1}, X_{2}, \cdots, X_{n}$, we can consider these as models with $X_{i} \sim \mathcal{N}\left(\theta_{i}, 1\right)$ and $X_{i} \sim \mathcal{N}\left(0, \theta_{i}^{2}\right)$ respectively. We would like to estimate the mixing distribution G when the observations are assumed exchangeable. Kiefer and Wolfowitz (1956) proposed estimating G by nonparametric maximum likelihood,

$$
\begin{equation*}
\max _{G \in \mathcal{G}}\left\{\sum_{i=1}^{n} \log f\left(X_{i}\right) \mid f(x)=\int \varphi(x, \theta) d G(\theta)\right\} \tag{1}
\end{equation*}
$$

and proved consistency of the resulting \hat{G}. Computation by the EM algorithm was suggested by Laird (1978), but remained quite challenging. Modern convex optimization methods provide a much more efficient and scalable approach to computation as shown in Koenker and Mizera (2014). However, many open problems remain regarding the statistical performance of these methods.

An important step forward in this respect is the recent work of Saha and Guntuboyina (2019) who consider the Gaussian location mixture model in \mathbb{R}^{d}. They evaluate performance relative to the oracle Bayes estimator that knows the empirical measure of the true θ^{\prime} 's, $\mathbb{G}_{n}(t)=n^{-1} \sum_{i=1}^{n} I\left(t-\theta_{i}\right)$. Their Proposition 2.3 establishes that when \mathbb{G}_{n} is discrete, supported on a set of cardinality k, there exists a constant C_{d}, such that,

$$
\mathbb{E} d_{H}^{2}\left(\hat{f}_{n}, f_{\mathbb{G}_{n}}\right) \leq C_{d}\left(\frac{k}{n}(\sqrt{\log n})^{d+(4-d)_{+}}\right) .
$$

It follows easily this is the minimax attainable rate. Again, we have an almost parametric convergence rate up to the logarithmic factor for the nonparametric MLE of the mixture density.

5. Shape Constrained Regression

It should not come as a big surprise that shape constraints can also play an important role in regression as well as in density estimation. Most of the literature has focused on the least squares fidelity criterion. The simplest setting is the isotonic regression model,

$$
Y_{i}=\theta_{i}+u_{i} i=1,2, \cdots, n,
$$

where the θ_{i} are assumed to satisfy $\theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{n}$. Implicitly, we can think of this model as one in which we observe Y_{i} 's at a sequence of increasing design points. The apparently more general formulation of the model with $Y_{i}=g\left(x_{i}\right)+u_{i}$ reduces to the former model under general convex loss; if the observations are not ordered in the covariate, x_{i}, we can simply reorder the Y_{i} 's according to the order of the x_{i} 's and proceed as before. Under the monotonicity constraint solutions are piecewise constant with jumps at the design points and loss depends only on the estimated function values at these design points.

For iid Gaussian u_{i} with variance $\sigma^{2}<\infty$ the nonparametric MLE can again be formulated as a convex optimization problem,

$$
\min _{\theta}\left\{\sum_{i=1}^{n}\left(Y_{i}-\theta_{i}\right)^{2} \mid \theta \in \mathcal{K}_{n}\right\}
$$

where \mathcal{K}_{n} is the convex polyhedral cone of nondecreasing sequences. This problem has a long history going back to Brunk (1955) and perhaps even before. Computation of solutions are typically carried out with the pool-adjacent-violaters algorithm (PAVA), although various modern variants of quadratic programming could also be used.

Zhang (2002) showed that the empirical risk of the nonparametric MLE, $\hat{\theta}_{n}$

$$
R_{n}=n^{-1} \sum_{i=1}^{n}\left(\theta_{i}-\hat{\theta}_{i}\right)^{2} \leq C\left[\left(\frac{\sigma^{2} V_{n}}{n}\right)^{2 / 3}+\frac{\sigma^{2} \log n}{n}\right]
$$

where $V_{n}=\theta_{n}-\theta_{1}$ and C is a fixed constant. However, more recent refinements establish that improvement over this $\mathcal{O}\left(n^{-1 / 3}\right)$ rate can be achieved under the special circumstances that the θ_{i} are piecewise constant with a small number, k, of pieces. In that case Chatterjee, Guntuboyina, and Sen (2015) prove that,

$$
R_{n} \leq \inf _{k}\left(\frac{4 \sigma^{2}(1+k)}{n} \log \frac{e n}{1+k}\right)
$$

Thus, up to the log factor we again have almost parametric convergence, determined by the number of distinct piecewise constant elements in the target function. And again it is worth stressing that adaptation is achieved over the number and locations of
these pieces without any intervention of tuning parameters. When the monotonicity is misspecified there is obviously a bias effect and this is also characterized in the general formulation of this result.

When the monotonicity constraint is replaced by a convexity (or concavity) constraint the nonparametric MLE under Gaussian error is piecewise linear with knots at the observed design points. In the simplest setting with equally spaced design points this imposes the constraint that second differences of θ_{i} 's are nonnegative. Guntuboyina and Sen (2015) and Chatterjee, Guntuboyina, and Sen (2015) prove that when the target regression function is k-affine, that is piecewise linear with k distinct pieces, the NPMLE again achieves an adaptive parametric rate of convergence up to a log factor.

Although the prior literature has focused exclusively on the least squares, iid Gaussian noise setting, as has most of the PAVA literature, there is nothing that prohibits us from entertaining other fidelity criteria. A natural alternative is the family of quantile loss functions that yield estimates of the conditional quantile functions of the response. Again, we have a convex optimization problem,

$$
\min \left\{\sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-g\left(x_{i}\right)\right) \mid g \in \mathcal{K}\right\}
$$

where $\rho_{\tau}(u)=u(\tau-I(u<0))$, and \mathcal{K} is the closed convex cone representing either monotone, convex or concave functions. An implementation of such estimators is available in the R package quantreg with the function rqss. In contrast to the least squares version of PAVA, the algorithmic complexity of the quantile implementation via interior point methods has not be carefully analyzed, but sparsity of the underlying constraint matrix assures efficient practical performance. This implementation expands the formulation in several respects: (i) there is an option to impose further smoothness on the shape constrained estimate, (ii) general, unequally spaced, design points are permitted, and (iii) additive models with several shape constrained components are permitted. To elaborate briefly on the first point, the general form of the rqss function permits the user to impose a total variation penalty on the first derivative of the fitted function,

$$
T V\left(g^{\prime}\right)=\int\left|g^{\prime \prime}(x)\right| d x
$$

controlled by a tuning parameter λ. When λ is sufficiently large the \hat{g}_{n} is constrained to be linear, while when λ is sufficiently close to zero the TV penalty has no effect and only the shape constraint determines the fit.

From a computational viewpoint the polyhedral cone and total variation constraints are especially appealing in the quantile regression setting because they maintain the linear programming structure of the estimation problem. Due to the relative sparsity of the design matrices in such problems modern interior point algorithms are quite
efficient even for large scale problems. It should be noted that the form of the solutions, that is whether they are piecewise constant, piecewise linear, etc., is entirely determined by the form of the constraints and in particular by the order of the differential operator appearing there. Thus, if $g \in \mathcal{K}$ requires that $D g \geq 0$ to impose monotonicity then solutions will be piecewise constant. If instead $D^{2} g \geq 0$ is imposed to achieve convexity then solutions will be piecewise linear. Likewise, total variation penalties on g, itself, yield piecewise constant solutions, while total variation penalties on $D g$, thereby controlling the L_{1} norm of $D^{2} g$ yield piecewise linear solutions. Although such methods have a long history in imaging and actuarial science they only have become widely appreciated in statistics through the relatively recent work of Kim, Koh, Boyd, and Gorinevsky (2009) and Tibshirani (2014).

We conjecture that these shape constrained conditional quantile function estimators enjoy the same almost parametric convergence as their least squares counterparts and hope to report on this at a later time.

6. Shape Constrained Transformation Models

This brings us to our final category of shape constrained estimators: transformation models take a variety of forms, but typically they have a single index structure like,

$$
\begin{equation*}
\mathbb{E} Y_{i} \mid X_{i}=\Psi\left(X_{i}^{\top} \beta\right) \tag{2}
\end{equation*}
$$

The covariates and the parameter, $\beta \in \mathbb{R}^{p}$ are wrapped in a function $\Psi: \mathbb{R} \rightarrow \mathbb{R}$ that may be parametric or nonparametric. Motivated by the revival of interest in the Grenander estimator, there has been increased interest in transformation models with monotonic Ψ. Clearly, when $p=1$ the β parameter is irrelevant and with Ψ monotonic we are back to the methods described in the previous section. When $p>1$ we can regard such models as an heroic attempt to circumvent the curse of dimensionality by assuming a simple form for the way the covariates enter the model while preserving some semblance of nonlinear structure. There are a variety of closely related models, some of which replace Ψ on the right hand side by some transformation of the response variable itself. The monograph of Carroll and Ruppert (1988) provides a systematic treatment of many of these models, both parametric and nonparametric.

Recently, Balabdaoui, Groeneboom, and Hendrickx (2019) and Groeneboom and Hendrickx (2019) have very thoroughly explored various approaches to estimating the model (2). They argue that it is preferable to avoid the direct profiling approach and focus on methods that find approximate zeros of the score (gradient) equations. It is clear that the vector β is identified only up to scale, so it is natural to impose the constraint that its Euclidean norm is one, $\|\beta\|=1$. This can be accomplished in a variety of ways, either by transformation to spherical coordinates, or by adding a Lagrangian term. They employ the former scheme for their asymptotics, but prefer the latter from a practical, computational standpoint. Another option is to simply set one of coordinates of β equal to 1 or -1 .

A drawback of the conditional mean formulation of the model, one that also afflicts a much broader class of nonlinear transformation models for conditional means, is the necessity of assuming that in the additive error formulation of the model,

$$
\begin{equation*}
Y_{i}=\Psi\left(X_{i}^{\top} \beta\right)+U_{i} \tag{3}
\end{equation*}
$$

there is full independence between the observed covariates, X_{i}, and the U_{i}. One way to circumvent this requirement is to replace the mean formulation by a conditional quantile formulation,

$$
\begin{equation*}
\mathbb{Q}_{Y \mid X}(\tau \mid X)=\Psi_{\tau}\left(X^{\top} \beta_{\tau}\right) . \tag{4}
\end{equation*}
$$

The quantile formulation also renders superfluous the unsightly moment conditions that appear inevitably in the analysis of the mean formulation. Such models were first considered by Chaudhuri, Doksum, and Samarov (1997) who provide a very thorough motivation and contextualization for this class of models. Drawing on earlier work of Chaudhuri they propose an average derivative estimator for β based on nonparametric kernel weighted quantile regression.

When the τ th conditional quantile function of Y given X is postulated to be a monotone function of a linear predictor in X_{i}, as seems plausible in many applications, we can try to exploit shape constrained methods to estimate both Ψ and β. Since quantiles are equivariant to monotone transformation, interpretation of the family of such models is also much more straightforward than their mean counterparts. Our initial computational strategy arose immediately from the equivariance property of the quantiles, (4) implies,

$$
\begin{equation*}
\mathbb{Q}_{\Psi_{\tau}^{-1}(Y) \mid X}(\tau \mid X)=X^{\top} \beta_{\tau} . \tag{5}
\end{equation*}
$$

Since this linear quantile regression formulation can be efficiently estimated even for high dimensional β, a simple iterative strategy in which alternate back and forth from estimation of Ψ to estimation of β seems attractive. At each iteration we can modify the resulting β so that it has norm one. Given a β, an estimate of Ψ can be obtained by solving the monotone quantile regression problem described above. Both steps are linear programs. The biconvex structure of the problem is common to many mathematical contexts, see Aumann and Hart (1986) and Gorski, Pfeuffer, and Klamroth (2007) further details. Unfortunately, there is no general assurance that such an iterative procedure converges to a global optimum. Indeed, contrary to our initial, naive expectations, it performed abysmally.

Thus, following the lead of Groeneboom and Hendrickx (2019), but not without some trepidation, we turned to global methods of optimization, in particular the patterned search method of Hooke and Jeeves (1961). Convergence of such pattern search algorithms to a stationary point was established by Torczon (1997). An R implementation is available from the optimx package of Nash and Varadhan (2011), and an Rcpp implementation available from the github site of Piet Groeneboom.

Figure 2. Single Index Median Regression Monotone Transformation Model: The plotted points depict the pairs $\left(\Psi_{\tau}\left(x_{i}^{\top} \beta_{0}\right), y_{i}\right)$. Three realizations for difference sample sizes of the final estimate of the monotone $\hat{\Psi}_{n}$ based on five Gaussian covariates in the single index. The true Ψ is depicted in black, while the estimate is in red.

Provisionally, we have experimented with the former implementation which has performed quite well. In Figure 2 we illustrate three realizations from a sample in which the true Ψ is piecewise constant with only one jump; there are 5 covariates drawn as independent standard Gaussians. It is apparent from this figure that the location and magnitude of the jump in Ψ is quite accurately estimated, this is hardly surprising in view of the fact that all the information about the linear predictor is contained in the neighborhood around this jump. Estimation of the level of Ψ before and after the jump is more problematic, which is again not surprising given that in the absence of a jump we would not be able to consistently estimate the linear index at all.

To begin to explore the asymptotic behavior of our proposed estimator it is useful to reconsider the case for a known transformation, Ψ. As described in Koenker (2005) Section 4.4, if we adopt the model,

$$
\mathbb{Q}_{Y_{i} \mid X_{i}=x_{i}}\left(\tau \mid x_{i}\right)=g\left(x_{i}, \beta_{0}\right),
$$

it is natural to try to estimate β_{0} by,

$$
\hat{\beta}_{n}=\operatorname{argmin}_{b \in \mathcal{B}} \sum \rho_{\tau}\left(y_{i}-g\left(x_{i}, b\right)\right) .
$$

We emphasize the verb "try" since optimization need no longer be an assured attack on a convex problem with a unique solution. In keeping with the vast literature on nonlinear least squares we will assume that the domain \mathcal{B} is compact. In addition we will assume that the conditional distribution functions F_{i} of $Y_{i} \mid X_{i}$ are absolutely continuous with continuous derivatives $f_{i}\left(\xi_{i}\right)$ at the points $\xi_{i}=g\left(x_{i}, \beta_{0}\right)$, and the following conditions on design.

G1.: There exist constants k_{0}, k_{1} and n_{0} such that, for $\beta_{1}, \beta_{2} \in \mathcal{B}$ and $n>n_{0}$

$$
k_{0}\left\|\beta_{1}-\beta_{2}\right\| \leq\left(n^{-1} \sum_{i=1}^{n}\left(g\left(x_{i}, \beta_{1}\right)-g\left(x_{i}, \beta_{2}\right)\right)^{2}\right)^{1 / 2} \leq k_{1}\left\|\beta_{1}-\beta_{2}\right\|
$$

G2.: There exist positive definite matrices D_{0} and $D_{1}(\tau)$ such that with $\dot{g}_{i}=$ $\partial g\left(x_{i}, \beta\right) /\left.\partial \beta\right|_{\beta=\beta_{0}}$.

$$
\begin{aligned}
& \text { (i) } \mathbb{E} \dot{g}_{i} \dot{g}_{i}^{\top}=D_{0} \\
& \text { (ii) } \mathbb{E} f_{i}\left(\xi_{i}\right) \dot{g}_{i} \dot{g}_{i}^{\top}=D_{1}(\tau) \\
& \text { (iii) } \max _{i=1, \ldots, n}\left\|\dot{g}_{i}\right\| / \sqrt{n} \rightarrow 0 .
\end{aligned}
$$

Under these conditions, it can be shown that we have the Bahadur representation,

$$
\sqrt{n}\left(\hat{\beta}_{n}-\beta_{0}\right)=D_{1}^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \dot{g}_{i} \psi_{\tau}\left(u_{i}\right)+o_{p}(1)
$$

where $\psi_{\tau}=\rho_{\tau}^{\prime}$ and $u_{i}=y_{i}-g\left(x_{i}, \beta_{0}\right)$. Consequently,

$$
\sqrt{n}\left(\hat{\beta}_{n}-\beta_{0}\right) \leadsto \mathcal{N}\left(0, \tau(1-\tau) D_{1}^{-1} D_{0} D_{1}^{-1}\right),
$$

for further details see Oberhofer and Haupt (2016).
In the special case of the single index model, $g(x, \beta)=\Psi\left(x^{\top} \beta\right)$ and $\beta \in \mathcal{B}$ is replaced by $\beta \in \mathcal{S}^{p-1} \equiv\left\{b \in \mathbb{R}^{p} \mid\|b\|=1\right\}$. Thus, $\dot{g}=\partial g / \partial \beta$ becomes $J \dot{\Psi} X$ where J denotes the Jacobian of the transformation that maps β into its ($p-1$)-dimensional counterpart. When Ψ is strictly increasing as is commonly assumed in the literature, this returns the expressions for D_{0} and D_{1} to something closely resembling their linear quantile regression equivalents except for the weighting factors from the $\dot{\Psi}_{i}$ terms and the dimension reduction effect of the Jacobian terms. Inverses in the sandwich formulae now of course need to be interpreted as generalized inverses due to the dimension reduction.

At this point the obvious question is: How does all this change when Ψ is estimated? Surprisingly, the answer would seem to be: very little. Following the arguments of Balabdaoui, Groeneboom, and Hendrickx (2019) and several prior authors cited there in the mean regression setting, this would entail replacing $X X^{\top}$ in the modified expressions for D_{0} and D_{1} by the conditional covariance $\operatorname{Cov}\left(X \mid X^{\top} \beta=x^{\top} \beta\right)$. This change reflects a reduction in the precision of the estimator $\hat{\beta}_{n}$. For smoothly increasing Ψ, as in the least squares theory, it is inevitable that we would obtain cube
root convergence for $\hat{\Psi}_{n}$. A much more intriguing question, but a considerably more difficult one, is this: Can \sqrt{n} convergence of $\hat{\Psi}_{n}$ be salvaged if we are willing to assume that the true Ψ is piecewise constant? The highly accurate estimates of the jump component of Ψ in Figure 2 offers a hint that this may indeed be plausible. Unfortunately, we must leave this intriguing problem for future research.

References

Aumann, R., AND S. Hart (1986): "Bi-convexity and bi-martingales," Israel Journal of Mathematics, 54, 159-180.
Balabdaoui, F., P. Groeneboom, and K. Hendrickx (2019): "Score estimation in the monotone single-index model," Scandinavian Journal of Statistics, 46, 517-544.
Balabdaoui, F., H. Jankowski, M. Pavlides, A. Seregin, And J. Wellner (2011): "On the Grenander Estimator at Zero," Statistica Sinica, 21, 873-899.
Birgé, L. (1989): "The Grenander Estimator: A Nonasymptotic Approach," Annals of Statistics, 17, 1532-1549.
Brunk, H. D. (1955): "Maximum Likelihood Estimates of Monotone Parameters," The Annals of Mathematical Statistics, 26, 607-616.
Carroll, R. J., And D. Ruppert (1988): Transformation and Weighting in Regression. Chapman \& Hall, Ltd.
Chatterjee, S., A. Guntuboyina, And B. Sen (2015): "On risk bounds in isotonic and other shape restricted regression problems," The Annals of Statistics, 43, 1774-1800.
Chaudhuri, P., K. Doksum, and A. Samarov (1997): "On average derivative quantile regression," The Annals of Statistics, 25, 715-744.
Gorski, J., F. Pfeuffer, and K. Klamroth (2007): "Biconvex Sets and Optimization with Biconvex Functions: A Survey and Extensions," Mathematical Methods in Operations Research, 66, 373-407.
Grenander, U. (1956): "On the theory of mortality measurement," Scandinavian Acturial Journal, 39, 125-153.
Groeneboom, P. (1985): "Estimating a monotone density," in Proceedings of the Berkeley Conference in honor of Jerzy Neyman and Jack Kiefer, ed. by L. LeCam, and R. Olshen, pp. 539-555. Wadsworth.
Groeneboom, P., and K. Hendrickx (2019): "Estimation in monotone single-index model," Statistica Neerlandica, 73, 78-99.
Groeneboom, P., And G. Jongbloed (2014): Nonparametric Estimation under Shape Constraints: Estimators, Algorithms and Asymptotics. Cambridge University Press.
Guntuboyina, A., And B. Sen (2015): "Global risk bounds and adaptation in univariate convex regression," Probability Theory and Related Fields, 163, 379-411.
Hooke, R., AND T. Jeeves (1961): "Direct search solution of numerical and statistical problems," Journal of the ACM, 8, 212-229.
Kiefer, J., AND J. Wolfowitz (1956): "Consistency of the Maximum Likelihood Estimator in the Presence of Infinitely Many Incidental Parameters," The Annals of Mathematical Statistics, 27, 887-906.
Kim, A. K. H., A. Guntuboyina, And R. J. Samworth (2018): "Adaptation in log-concave density estimation," Annals of Statistics, 46, 2279-2306.
Kim, A. K. H., and R. J. Samworth (2016): "Global rates of convergence in log-concave density estimation," Annals of Statistics, 44, 2756-2779.

Kim, S.-J., K. Koh, S. Boyd, And D. Gorinevsky (2009): "L L_{1} Trend Filtering," SIAM Review, 51, 339--360.
Koenker, R. (2005): Quantile Regression. Cambridge University Press.
Koenker, R., and I. Mizera (2014): "Convex Optimization, Shape Constraints, Compound Decisions and Empirical Bayes Rules," Journal of the American Statistical Association, 109, 674685.

Koenker, R., and I. Mizera (2018): "Shape Constrained Density Estimation Via Penalized Rényi Divergence," Statistical Science, 33, 510-526.
Laird, N. (1978): "Nonparametric Maximum Likelihood Estimation of a Mixing Distribution," Journal of the American Statistical Association, 73, 805-811.
Nash, J. C., AND R. Varadhan (2011): "Unifying Optimization Algorithms to Aid Software System Users: optimx for R," Journal of Statistical Software, 43, 1-14.
Oberhofer, W., and H. Haupt (2016): "Asymptotic Theory for Nonlinear Quantile Regression under Weak Dependence," Econometric Theory, 32, 686-713.
Prakasa Rao, B. L. S. (1969): "Estimation of a Unimodal Density," Sankhyā: The Indian Journal of Statistics, Series A, 31, 23-36.
Saha, S., And A. Guntuboyina (2019): "On the nonparametric maximum likelihood estimator for Gaussian location mixture densities with application to Gaussian denoising," Annals of Statistics, forthcoming.
Tibshirani, R. J. (2014): "Adaptive piecewise polynomial estimation via trend filtering," The Annals of Statistics, 42, 285-323.
Torczon, V. (1997): "On the convergence of pattern search algorithms," SIAM Journal on Optimization, 7, 1-25.
Zhang, C.-H. (2002): "Risk bounds in isotonic regression," The Annals of Statistics, 30, 528-555.

[^0]: Version: May 31, 2020. This paper was inspired by and prepared for the celebration of the 75 th birthday of Estate Khmaladze in Tbilisi, 2019.

[^1]: ${ }^{1}$ For further computational details on these alternative formulations see demo(Grenander) in the R package REBayes.

[^2]: ${ }^{2}$ Indeed, this may lead one to wonder whether, in circumstances where the monotonicity assumption is plausible, it might be advantageous to use the Grenander \hat{f}_{n} as a pilot estimator, simply convolving it with a smooth density if its piecewise constant appearance was deemed unattractive.

